Temporal Network Creation Games

Davide Bilò

Algorithmic Aspects of Temporal Graphs VI Paderborn, Germany July 10th, 2023

Temporal Network Creation Games

Davide Bilò¹, Sarel Cohen², Tobias Friedrich², Hans Gawendowicz², Nicolas Klodt ², Pascal Lenzner² and George Skretas²

¹ University of L'Aquila, Italy ²Hasso Plattner Institute Potsdam, Germany

Recently accepted at IJCAI 2023

Temporal Network Creation Games

Davide Bilò¹, Sarel Cohen², Tobias Friedrich², Hans Gawendowicz² Nicolas Klodt², Pascal Lenzner² and George Skretas²

TEMPORAL REACHABILITY PROBLEM

[Kempe, Kleinberg, and Kumar, JCSS 2002]

NETWORK CREATION GAMES

First paper in AGT [Fabrikant, Luthra, Maneva, Papadimitriou, Shenker, PODC 2003] Afterwards, many other models were defined and studied

Temporal Graphs

A temporal graph with lifetime t = 3

Temporal graph *H* with lifetime $t \in \mathbb{N}$:

- 1. undirected graph with *n* vertices
- 2. each edge *e* has an integer time label $\lambda(e) \in [t]$

(non-strict) temporal path from v to u in H: A path from v to u with monotonically non-decreasing time labels (u is temporally reachable from v)

Temporally connected graph: A temporal graph H that contains a temporal path from v to u, for every ordered pair (v, u) of vertices v, u of H

Temporal Reachability Network Creation Game

- <u>Complete</u> temporal host graph H with lifetime t
- vertices of H are <u>selfish</u> agents

HOW THE AGENTS FORM A NETWORK

- agent v buys a set of edges S_v incident to her
- Let $S = \langle S_v \rangle_v$ be the strategy profile
- $\bigcup_{v} S_{v}$ are the edges of the formed network G(S)

THE COST FUNCTION EACH AGENT WANTS TO MINIMIZE

- U_v : set of vertices that are NOT temporally reachable from v in G(S)
- penalty of K > 1 for each unreached vertex

$$cost(v,S) = |S_v| + K \cdot |U_v|$$

Temporal Reachability Network Creation Game

- <u>Complete</u> temporal host graph H with lifetime t
- vertices of H are <u>selfish</u> agents

HOW THE AGENTS FORM A NETWORK

- agent v buys a set of edges S_v incident to her
- Let $S = \langle S_v \rangle_v$ be the strategy profile
- $\bigcup_{v} S_{v}$ are the edges of the formed network G(S)

THE COST FUNCTION EACH AGENT WANTS TO MINIMIZE

- U_v : set of vertices that are NOT temporally reachable from v in G(S)
- penalty of K > 1 for each unreached vertex

 $cost(v, S) = |S_v| + K \cdot |U_v|$

G(S) is a **stable** if $cost(v, S) \le cost(v, (S_{-v}, S'_v))$ for every agent v and for every alternative strategy S'_v for agent v.

Important questions in NCGs

- Analyzing the EXISTENCE of STABLE NETWORKS
 - QUESTION 1: Does the game always admit stable networks?
- Understanding the COMPUTATIONAL COMPLEXITY aspects of the game
 - QUESTION 2: Is agent x playing a best response?
 - **QUESTION 3:** Is the network formed by the agents stable?
- Analyzing the QUALITY of STABLE NETWORKS
 - **QUESTION 4:** What is the *Price of Anarchy* of the game?

Price of Anarchy: worst-case ratio between social cost of stable networks vs social cost of optimum solution, where social cost of *S* is equal to $\sum_{v} cost(v, S)$

Trivial results (lifetime t = 1)

A

QUESTION 1: Does the game always admit stable networks?	YES
QUESTION 2: Is agent x playing a best response?	in P
QUESTION 3: Is the network formed by the agents stable?	in P
QUESTION 4: What is the Price of Anarchy of the game?	1 (spanning trees)

QUESTION 1: Does the game always admit stable networks?	
QUESTION 2: Is agent x playing a best response?	
QUESTION 3: Is the network formed by the agents stable?	
QUESTION 4: What is the Price of Anarchy of the game?	

EXISTENCE of STABLE NETWORKS

- **QUESTION 1:** Does the game always admit stable networks?
- FIRST ATTEMPT: Is the game a *potential game*?

QUESTION 1: Does the game always admit stable networks?

THEOREM: The Temporal Reachability NCG is NOT a potential game.

Detail to guarantee temporal connectivity

QUESTION 1: Does the game always admit stable networks?

THEOREM: Complete host graphs with lifetime t = 2 always contain a stable network.

PROOF: There is always a spanning tree whose edges all have the same time label.

QUESTION 1: Does the game always admit stable networks?	YES for $t = 2$ OPEN for $t \ge 3$ not a potential game
QUESTION 2: Is agent x playing a best response?	
QUESTION 3: Is the network formed by the agents stable?	
QUESTION 4: What is the Price of Anarchy of the game?	

COMPUTATIONAL COMPLEXITY

- **QUESTION 2:** Is agent *x* playing a best response?
- **QUESTION 3:** Is the network formed by the agents stable?

QUESTION 2: Is agent x playing a best response?

THEOREM: Computing a best response of agent x is NP-hard even for complete host graphs with lifetime t = 2.

SET COVER PROBLEM INSTANCE:

- Universe $U = \{u_1, u_2, u_3, u_4, u_5\}$
- Sets: $M_1 = \{u_1, u_2\}, M_2 = \{u_1, u_2, u_4\}, M_3 = \{u_3, u_5\}$

Computing a best response for x is equivalent to solving the SET COVER PROBLEM INSTANCE.

Missing edges all have time label 2

QUESTION 3: Is the network formed by the agents stable?

THEOREM: Deciding whether the network formed by the agents is stable is NP-complete even for complete host graphs with lifetime t = 3.

Given a SET COVER PROBLEM INSTANCE + SOLUTION, deciding whether there is a better solution is NP-complete.

SET COVER PROBLEM INSTANCE

- Universe $U = \{u_1, u_2, u_3, u_4, u_5\}$
- Sets: $M_1 = \{u_1, u_2\}, M_2 = \{u_1, u_2, u_4\}, M_3 = \{u_3, u_5\}$
- SOLUTION $\{M_2, M_3\}$

Missing edges all have time label 3

QUESTION 1: Does the game always admit stable networks?	YES for $t = 2$ OPEN for $t \ge 3$ not a potential game	
QUESTION 2: Is agent x playing a best response?	NP-hard	
QUESTION 3: Is the network formed by the agents stable?	NP-hard for $t \ge 3$	
QUESTION 4: What is the Price of Anarchy of the game?		

QUESTION 1: Does the game always admit stable networks?	YES for $t = 2$ OPEN for $t \ge 3$ not a potential game	
QUESTION 2: Is agent x playing a best response?	NP-hard	
QUESTION 3: Is the network formed by the agents stable?	NP-hard for $t \ge 3$	
QUESTION 4: What is the Price of Anarchy of the game?	$\Omega(\log n)$	

temporally connected 3-d hypercube

Kempe, Kleinberg, and Kumar [JCSS 2002] constructed a temporally connected $\log n$ -dimensional hypercube with lifetime $t = \log n$ that is minimal.

- *G*(*S*) is the temporal log *n*-dimensional hypercube
- missing edges all have the same time label of $1 + \log n$ LEMMA: G(S) is stable.

QUESTION 4: What is the Price of Anarchy of the game?

THEOREM: Size of stable networks is $\leq t(n-1)$, where t is the lifetime of host graph.

PROOF: The subgraph G_l of a stable network G(S) formed by edges of time label l is a forest.

QUESTION 1: Does the game always admit stable networks?	YES for $t = 2$ OPEN for $t \ge 3$ not a potential game	
QUESTION 2: Is agent x playing a best response?	NP-hard	
QUESTION 3: Is the network formed by the agents stable?	NP-hard for $t \ge 3$	
QUESTION 4: What is the Price of Anarchy of the game?	$\Omega(\log n) \le t$	

QUESTION 4: What is the Price of Anarchy of the game?

THE CONCEPT OF **NECESSARY EDGE** IN STABLE NETWORKS

Agent v buys an edge e because e is **necessary** for v to temporally reach some u in G(S).

THEOREM: If G(S) contains $\omega(n\sqrt{n})$ edges, then it is not stable.

PROOF: A counting argument shows that the forbidden structure appears.

Forbidden structure that never appears in stable networks

Label edge e bought by v with [u]if e is necessary for v to reach u

One of the two agents v_1 and v_2 can delete an edge

QUESTION 1: Does the game always admit stable networks?	YES for $t = 2$ OPEN for $t \ge 3$ not a potential game
QUESTION 2: Is agent x playing a best response?	NP-hard
QUESTION 3: Is the network formed by the agents stable?	NP-hard for $t \ge 3$
QUESTION 4: What is the Price of Anarchy of the game?	$\Omega(\log n) \le \min\{t, O(\sqrt{n})\}$

Extensions to GREEDY agents

The model of GREEDY agent

A greedy stable network which is not stable

Introduced by [Lenzner, WINE 2012] to avoid hardness of computing best responses.

Strategy allowed to a **greedy** agent v in G(S)

- Add an edge incident to v to S_v
- Delete an edge from S_v
- Swap an edge (one deletion + one addition)

G(S) is **greedy stable** if no greedy agent can be better off by performing a greedy move.

	Selfish agents	Greedy agents
QUESTION 1: Does the game always admit stable networks?	YES for $t = 2$ OPEN for $t \ge 3$ not a potential game	YES for $t = 2$ OPEN for $t \ge 3$ not a potential game
QUESTION 2: Is agent <i>x</i> playing a best response?	NP-hard	in P
QUESTION 3: Is the network formed by the agents stable?	NP-hard for $t \ge 3$	In P
QUESTION 4: What is the Price of Anarchy of the game?	$\Omega(\log n) \le \min\{t, O(\sqrt{n})\}$	$\Omega(\log n) \le \min\{t, O(\sqrt{n})\}$

Summary and Open Problems

- MAIN NOVELTY: We combined Temporal Graphs with Network Creation Games
- We provided some results for Temporal Reachability Network Creation Game

OPEN PROBLEMS

- 1. **QUESTION 1:** Does the game always admit stable networks?
 - CONJECTURE: Yes
- 2. **QUESTION 4:** What is the Price of Anarchy of the game?
 - **CONJECTURE:** Stable networks are sparse
- 3. Study other Temporal Network Creation Games

