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COMPLEXITY RESULTS

FIREFIGHTER (Hartnell 1995)

Input: A rooted graph (G, r) and an integer k.
Output: Can we save at least k vertices if the 昀椀re starts burning
at r?

NP-Complete on arbitrary graphs, but in P for:

∙ Interval graphs, permutation graphs, Pk-free graphs for
k > 5, split graphs, cographs (Fomin, Heggernes, and
Leeuwen 2016).

∙ Graphs of maximum degree three with deg(r) = 2. (Finbow
et al. 2007).
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TEMPORAL GRAPHS

(G, λ):
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OUR COMPLEXITY RESULTS

TEMPORAL FIREFIGHTER
Input: A rooted temporal graph ((G, λ), r) and an integer k.
Output: Can we save at least k vertices if the 昀椀re starts burning
at r?

NP-Complete whenever the underlying graph belongs to a
class for which FIREFIGHTER is NP-Complete.

Remains in P for graphs of maximum degree 3 providing
deg(r) = 2, the good news seems to end there...
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OUR HARDNESS RESULTS

NP-Complete on interval graphs, permutation graphs, Pk-free
graphs for k > 5, split graphs, and cographs.

r r

λ( ) = {1..|V(G)| − 1}
λ( ) = {|V(G)| − 1}
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A LESS CHEATY REDUCTION

r r

{W}

λ( ) = {1..|V(G)| − 1}
λ( ) = {|V(G)| − 1}
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TEMPORAL GRAPH PARAMETERS

Using the underlying structure of the graph doesn’t seem to
fruitful, what else can we try?

Make use of the times! We look for a parameter of the
temporal structure that will give us 昀椀xed parameter tractability.

Reminder: we say a problem is 昀椀xed parameter tractable if we
can solve it in time f(k) · poly(n).
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VERTEX INTERVAL MEMBERSHIP WIDTH

TEMPORAL FIREFIGHTER is 昀椀xed parameter tractable when
parameterised by vertex-interval-membership-width.

Measures the maximum number of vertices that are relevant at
any given timestep (Bumpus and Meeks 2021).

{5}
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{8}
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VERTEX INTERVAL MEMBERSHIP SEQUENCE

In particular the vertex interval membership width is the
maximum size of an entry in the vertex interval membership
sequence.

This is a sequence of sets of vertices (Ft)t∈[Λ] - one set for each
timestep.

For each time t we include a vertex v in Ft if its active interval
contains t:

Ft := {u ∈ V(G) : ∃i ≤ t ≤ j, ∃v,w ∈ V(G).i ∈ λ(vu) ∧ j ∈ λ(wu)}
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VERTEX INTERVAL MEMBERSHIP WIDTH

Figure 1: A graph with vimw ω = 4, the vertex interval membership
sequence is displayed to the right.

Then the vertex interval membership sequence of a graph G is
the integer ω := maxt∈[Λ] |Ft|
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TEMPORAL FIREFIGHTER RESERVE

Easier to work with a related problem TEMPORAL FIREFIGHTER
RESERVE, in which defences can be delayed and added to a
budget.

Can save the exact same number of vertices as in TEMPORAL
FIREFIGHTER.

All defences can be delayed until right before the vertex to be
defended would burn.
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AN FPT ALGORITHM

Dynamically program - for each timestep t iteratively compute
sets Lt containing every possible state (D,B,g, c) where:

∙ D is the set of relevant defended vertices
∙ B is the set of relevant burnt vertices
∙ g is the budget
∙ c is the total number of burnt vertices

Begin by initialising L0 = {(∅, {r}, 1, 1)}. Then consider every
possible defence (including not defending at all) temporally
adjacent to the 昀椀re, and create entries in L1 accordingly.
Continue iterating over the timesteps in this manner.
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RUNTIME

The number of relevant burnt and defended vertices is
bounded by the vertex interval membership width.

Thus there are O(4ωωΛ2) entries in each Lt. Additionally for
each entry in Lt there are at most 2ω defences to consider in
order to compute the entries in Lt+1.

We do this for every timestep, so we obtain a runtime of
O(8ωωΛ3).
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CONCLUSIONS

Just restricting the structure of the underlying graph in
TEMPORAL FIREFIGHTER is not very useful.

However when we consider restricting the temporal structure,
we get FPT!

What other parameters can we devise? For what problem do
they work?
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FUTURE WORK

Recently we have considered the complexity of TEMPORAL
FIREFIGHTER where we bound the number of edges per
timestep - we believe it remains hard, even on trees.

Limit the edge activity and the maximum degree?

Approximations?

Related problems: graph burning, graph 昀氀ooding etc.
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QUESTIONS?
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