Approximating Multistage Matching Problems
and other subgraph problems

Markus Chimani
joint work with Niklas Troost and Tilo Wiedera

Reminder: Perfect Matching

Given: Compatibility graph.

Task: Find a unique compatible parrot for each pirate.

Definition (Perfect Matching)

A *perfect matching* in a graph $G = (V, E)$ is a set $M \subseteq E$ of edges, such that

- no two edges in M share an endpoint,
- each vertex in V is incident with an edge in M.
Motivation: Multistage Perfect Matching

Task: Find a perfect matching in each year such that the sum of common edges in consecutive years is maximized.
A **multistage graph** is a tuple $G = (V, E_1, \ldots, E_\tau)$ consisting of a set of vertices V and multiple sets of edges $E_i \subseteq \binom{V}{2}$.

The graph induced by some E_i is called the i-th stage of G and denoted G_i.

Formal setting

Definition

- A multistage graph is a tuple $G = (V, E_1, \ldots, E_\tau)$ consisting of a set of vertices V and multiple sets of edges $E_i \subseteq \binom{V}{2}$.
- The graph induced by some E_i is called the i-th stage of G and denoted G_i.

Formal setting

Definition

- A multistage perfect matching in G is a sequence of matchings $\mathcal{M} = (M_i)_{i=1}^{\tau}$ such that each M_i is a perfect matching in G_i. The profit of \mathcal{M} is $p(\mathcal{M}) := \sum_{i=1}^{\tau-1} |M_i \cap M_{i+1}|$.

- MIM is the problem of finding an \mathcal{M} that maximizes $p(\mathcal{M})$.
Related work

- Deciding **MIM** is NP-hard...
 - ...for ≥ 6 stages [Gupta et al. 2014],
 - ...for ≥ 2 stages [Bampis et al. 2018],
 - ...for ≥ 2 stages & each stage consists only of disjoint cycles

- **Maximum Multistage Matching** (with edge weights) is APX-hard, but there is a $1/2$-approximation [Bampis et al. 2018].

 Task: Maximize $p(M) + \sum_{i=1}^{T} w(M_i)$.

 Doesn’t this include our problem?
Multistage Perfect Matching

\[p(\mathcal{M}) + \sum_{i=1}^{\tau} w(\mathcal{M}_i) = (1 + 1) + (3 + 3 + 3) = 11 \]

\[p(\mathcal{M}') + \sum_{i=1}^{\tau} w(\mathcal{M}_i') = (2 + 2) + (3 + 2 + 3) = 12 \]
Approximation under hard constraints for each stage
Preficiency & Intertwinement

Perfect Matching is preficient (=preference efficient)

Given: Graph $G = (V, E)$, edge set $P \subseteq E$.
Task: Compute a perfect matching M on G that maximizes $|M \cap P|$.

prefPM(G, F)

```plaintext
foreach $e \in E \setminus P$ do
    $w(e) \leftarrow 1$
foreach $e \in P$ do
    $w(e) \leftarrow 1 + \varepsilon$
compute a maximum weight matching $M$ on $G$
return $M$
```

Intertwinement: $\chi := \max_{i < \tau} |E_i \cap E_{i+1}|$

2 stages: $E_\cap := E_1 \cap E_2$, $\chi := |E_\cap|$
Approximation for two stages: “prefer-and-ignore”

2IM-Approx

\[P \leftarrow E_n \]

\[\text{while } |P| > 0 \text{ do} \]

\[M_1 \leftarrow \text{prefPM}(G_1, P) \]

\[M_2 \leftarrow \text{prefPM}(G_2, M_1) \]

\[P \leftarrow P \setminus M_1 \]

\text{return that } (M_1, M_2) \text{ from above with maximal } p(M_1, M_2) \]
Theorem

\textbf{2IM-Approx} is a (tight) $1/\sqrt{2\chi}$-approximation.

Proof sketch.

Let $M^*_n = M^*_1 \cap M^*_2$ be optimal. Assume $p(M^*_1, M^*_2) = |M^*_n| \geq 1$.

Case 1: $|M^*_n| \leq \sqrt{2\chi}$ is “small”.
⇒ Any solution with profit $|M_1 \cap M_2| \geq 1$ suffices.

Case 2: $|M^*_n| > \sqrt{2\chi}$ is “large”.
➤ Suppose in each iteration only “few” edges in $M_1 \cap M^*_n \cap P$.
⇒ We need “many” iterations, but ...
 ... the number of remaining edges in $M^*_n \cap P$ decreases “slowly”.
⇒ M_1 prefers $M^*_n \cap P$.
⇒ Eventually, $M_1 \cap M^*_n \cap P$ is “large”. ⚡
➤ M_2 maximizes $|M_1 \cap M_2| \geq |M_1 \cap M^*_2|$.
Further results for matchings

- **MIM** is NP-hard already in extremely restricted settings
- $1/\sqrt{2\chi}$-approximation for 2IM
- $1/\sqrt{8\chi}$-approximation for MIM
- Natural ILP for 2IM has LP-gap of $\sqrt{\chi}$
- If MIM is APX-hard, so is 2IM

- Approx. algorithms for MUM (=minimize unions)

$\alpha = 1/\sqrt{2\chi}$

$\alpha(\chi) \mapsto \alpha((\tau - 1)\chi)$

$2 - \alpha$
Beyond matchings...

Subgraph Problem (SP): *Intuition* Given a graph, find a subset of its graph elements that optimizes some measure.

Examples: Matching, Shortest Path, Vertex Cover, Independent Set, Max. Planar Subgraph,…

Multistage Subgraph Problem (MSP): *Intuition* Given an SP, find optimal solutions for each stage. **Maximize** transition profit.

Theorem

Consider a **preficient** MSP where we maximize the intersection between consecutive stages.

On two stages, it allows a $1/\sqrt{2|\chi|}$-approximation.

On arbitrarily many stages, it allows a $1/\sqrt{8|\chi|}$-approximation.
Preficiency?

Theorem

Consider a **preficient** MSP where we maximize the intersection between consecutive stages.

On two stages, it allows a $1/\sqrt{2|\chi|}$-approximation.

On arbitrarily many stages, it allows a $1/\sqrt{8|\chi|}$-approximation.

Preficient MSP: underlying SP allows a polynomial algorithm that prefers some graph elements over others.

Preficiency is typically **trivial** to show

(add some small $\varepsilon > 0$ to cost function)

\implies Theorem applicable to, e.g., the NP-hard multistage versions of:

- **Shortest s-t-path**, **Minimum s-t-cut**, **Maximum s-t-cut** on weakly-bipartite graphs (superset of planar graphs),
- **Minimum-Weight Vertex Cover** on bipartite graphs,
- **Maximum-Weight Independent Set** on bipartite graphs,...
Core question in all our investigations:
How well can be approximate a multistage problem if we require \textbf{optimal} solutions in each stage.

Open questions:

- We always end up with approximation ratios $\Theta(1/\sqrt{\chi})$. Is this best-possible for general MSPs? For matchings?
- What about optimal transitions but suboptimal per-stage solutions?

Thank you!