Near-optimal computation of temporal matching

Julien Baste
Binh-Minh Bui-Xuan
Ngoc-Trung Nguyen
Timothé Picavet
Antoine Roux

Glasgow, July 2021
Motivations

Real world network analysis:
 – web log, analytics
 – CRM statistics, BI reporting
 – criminology
⇒ timestamped information!

Cooperation scheduling:
 – XP, peer programming, coworker
 – edges, instant edges, interval edges
 – matching (independent edges)
⇒ temporal matching!
Timestamped edges and matching

time

graph

link stream
Timestamped edges and matching

graph

link stream
Timestamped edges and matching

Real world link stream
Our question: maximize collaborations?

QUESTION: given a minimum coworking duration, maximize the number of collaborations?
A link stream is a triple $L = (T, V, E)$ s.t.:
- $T = [1, \tau]$
- V is a finite set of vertices
- $E \subseteq \{(t, uv) : t \in T \land u \in V \land v \in V \land u \neq v\}$

A γ-edge Γ is a set of one edge repeated γ times:
- $\Gamma = \{(t, uv) \in E : t_0 \leq t \leq t_0 + \gamma - 1\}$

Two γ-edges Γ and Γ' are dependent if:
- $\exists t, u, v, w : (t, uv) \in \Gamma \land (t, uw) \in \Gamma'$

Temporal matching: a γ-matching is a set of independent γ-edges
Formal definition: \(\gamma \)-matching
Our question: maximum γ-matching?

Temporal matching: a γ-matching is a set of independent γ-edges

Problem γ-matching:
Input: link stream L, integer k
Output: boolean stating if there is a γ-matching in L of size k

Theorem:
- NP-completeness for $\gamma > 1$ [Baste, BX.]
- NP-completeness for very restricted link streams (with underlying graph being a path) [Mertzios, Molter, Niedermeier, Zamaraev, Zschoche]
Our results:

Temporal matching: a γ-matching is a set of independent γ-edges

Theorem [BX., Nguyen, Picavet]:
- γ-matching in time $O^*((\gamma + 1)^n)$ by dynamic programming (DP)
- PTAS for geometric link streams of bounded velocity and density

Numerical analysis:
- 2-approximation with greedy [Baste, BX., Roux]

 https://github.com/antoinedimitriroux
- DP for general case and PTAS for geometric case

 https://github.com/Talesseed/
DP formula

⇒ for every vertex, store the last used position in the sliding window
DP formula

⇒ for every vertex, store the last used position in the sliding window
A unit disk graph is:
- the intersection graph of unit disks in the plane
- embedded vertices in the plane; edges exist between vertices of distance at most 1
A geometric link stream is s.t.:

- every snapshot at time t is a unit disk graph
- moving (embedded) vertices in the plane; edges exist between vertices of distance at most 1
- velocity \approx derivative of (embedded) vertex’s position
- density \approx number of (embedded) vertices per square
PTAS for the geometric case

Essential ideas:
- time dimension \(\approx\) sliding window like previous DP
- each snapshot \(\approx\) use linear path with DP on stripes of the plane

Numerical analysis:
- DP: exact approximation ratio is 1
- PTAS: expected approximation ratio between 1.3 and 1.4
- greedy: expected approximation ratio is 2
PTAS vs. greedy on artificial data

Mean of the outputted size of γ-matchings
Ratio on artificial data (when available)

Mean of the approximation ratio (compared to exact DP)
Ratio on extracts from experiments

Mean of the approximation ratio (compared to exact DP)
Conclusion and questions

Conclusion:
- exact $O^*((\gamma + 1)^n)$ dynamic programming
- PTAS for geometric cases
- greedy 2-approximation
- https://github.com/antoinedimitriroux
- https://github.com/Talesseed/

Question:
- dynamic programming in $O^*(2^n)$?
THANK YOU