Temporal matchings

Julien Baste University of Lille

July 12, 2021

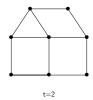
Joint work with Binh-Minh Bui-Xuan and Antoine Roux

Temporal graphs are life!

A temporal graph is a collection of graphs, on the same vertex set, indexed by time.

Temporal graphs are life!

A temporal graph is a collection of graphs, on the same vertex set, indexed by time.



Some examples of used temporal graphs:

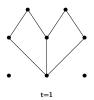
- Enron
 - Enron Email Dataset
 - 150 users
 - 0.5M messages

- Rollernet
 - Rollerblading tour in Paris
 - 62 participants
 - Proximity detection every 15 sec

Goal: Generalize the $\operatorname{MATCHING}$ problem to temporal graphs.

 $\mbox{\bf Goal:}$ Generalize the $\mbox{\it Matching}$ problem to temporal graphs.

Question: How to do it in an interesting way?



 $\textbf{Goal:} \ \ \textbf{Generalize the } MATCHING \ \ \textbf{problem to temporal graphs}.$

Question: How to do it in an interesting way?

Answer: A set of edges that, at any time, induces a matching and such that each edge exists at each time.

Goal: Generalize the MATCHING problem to temporal graphs.

Question: How to do it in an interesting way?

Answer: A set of edges that, at any time, induces a matching and such that each edge exists at each time.

Issue: This is MATCHING in the intersection graph.

 $\textbf{Goal:} \ \ \textbf{Generalize the } MATCHING \ \ \textbf{problem to temporal graphs}.$

Question: How to do it in an interesting way?

Answer: A matching in the graphs of the link steams such that the same vertex is not used twice.

Goal: Generalize the MATCHING problem to temporal graphs.

Question: How to do it in an interesting way?

Answer: A matching in the graphs of the link steams such that the same vertex is not used twice.

Issue: This is MATCHING in the union graph.

 $\textbf{Goal:} \ \ \textbf{Generalize the} \ \ \underline{\textbf{MATCHING}} \ \ \textbf{problem to temporal graphs}.$

Question: How to do it in an interesting way?

Answer: A matching in the disjoint union of the graphs of the temporal graph.

 $\textbf{Goal:} \ \ \textbf{Generalize the} \ \ \underline{\textbf{MATCHING}} \ \ \textbf{problem to temporal graphs}.$

Question: How to do it in an interesting way?

Answer: A matching in the disjoint union of the graphs of the temporal graph.

Issue: This is Matching in the disjoint union graph.

 $\mbox{\sc Goal:}$ Generalize the Matching problem to temporal graphs.

Question: How to do it in an interesting way?

Answer: The edge of our γ -matching should exist during γ consecutive times and at each time, this should be a matching.

 $\mbox{\sc Goal:}$ Generalize the $\rm MATCHING$ problem to temporal graphs.

Question: How to do it in an interesting way?

Answer: The edge of our γ -matching should exist during γ consecutive times and at each time, this should be a matching.

Theorem

Given $\gamma \geq 2$, γ -Matching is NP-hard.

Theorem

Given $\gamma \geq 2$, γ -MATCHING is NP-hard.

$$\varphi = (\overline{w} \lor x \lor \overline{y}) \land (\overline{w} \lor \overline{x} \lor z); \ \gamma = 3$$

Theorem

Given $\gamma \geq 2$, γ -MATCHING is NP-hard.

```
0
1
2
3
4
5
6
7
```

$$\varphi = (\overline{w} \lor x \lor \overline{y}) \land (\overline{w} \lor \overline{x} \lor z); \gamma = 3$$

Theorem

Given $\gamma \geq 2$, γ -MATCHING is NP-hard.

$$\varphi = (\overline{w} \lor x \lor \overline{y}) \land (\overline{w} \lor \overline{x} \lor z); \ \gamma = 3$$

Theorem

Given $\gamma \geq 2$, γ -MATCHING is NP-hard.

$$\varphi = (\overline{w} \lor x \lor \overline{y}) \land (\overline{w} \lor \overline{x} \lor z); \ \gamma = 3$$

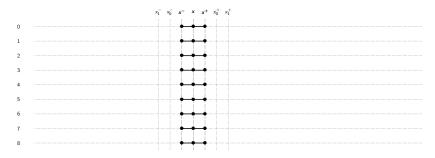
Theorem

Given $\gamma \geq 2$, γ -MATCHING is NP-hard.

$$\varphi = (\overline{w} \lor x \lor \overline{y}) \land (\overline{w} \lor \overline{x} \lor z); \ \gamma = 3$$

Theorem

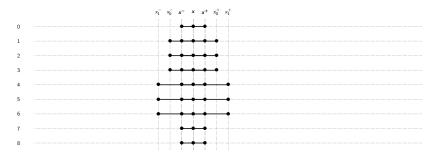
Given $\gamma \geq 2$, γ -MATCHING is NP-hard.



$$\varphi = (\overline{w} \lor x \lor \overline{y}) \land (\overline{w} \lor \overline{x} \lor z); \ \gamma = 3$$

Theorem

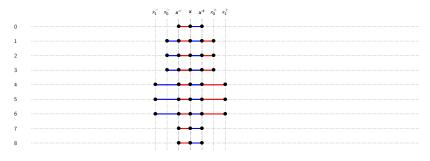
Given $\gamma \geq 2$, γ -MATCHING is NP-hard.



$$\varphi = (\overline{w} \lor x \lor \overline{y}) \land (\overline{w} \lor \overline{x} \lor z); \ \gamma = 3$$

Theorem

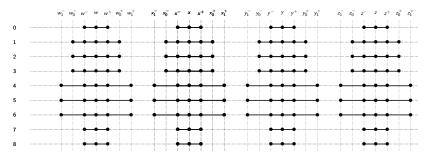
Given $\gamma \geq 2$, γ -MATCHING is NP-hard.



$$\varphi = (\overline{w} \lor x \lor \overline{y}) \land (\overline{w} \lor \overline{x} \lor z); \ \gamma = 3$$

Theorem

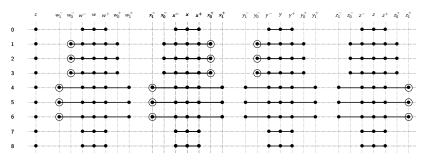
Given $\gamma \geq 2$, γ -MATCHING is NP-hard.



$$\varphi = (\overline{w} \lor x \lor \overline{y}) \land (\overline{w} \lor \overline{x} \lor z); \gamma = 3$$

Theorem

Given $\gamma \geq 2$, γ -MATCHING is NP-hard.

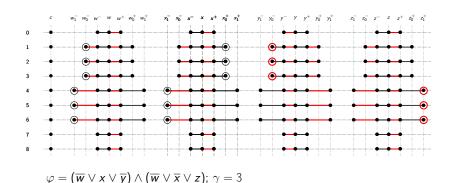


$$\varphi = (\overline{w} \lor x \lor \overline{y}) \land (\overline{w} \lor \overline{x} \lor z); \gamma = 3$$

Theorem

Given $\gamma \geq 2$, γ -MATCHING is NP-hard.

The reduction is from 3-SAT.



Solution: w, x, \overline{y}, z

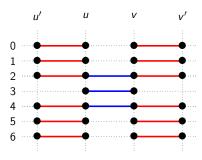
In normal graphs: Any maximal matching is a 2-approximation.

In normal graphs: Any maximal matching is a 2-approximation.

In temporal graphs: Any maximal γ -matching is a 4-approximation.

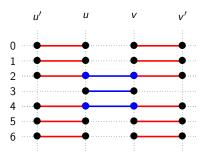
In normal graphs: Any maximal matching is a 2-approximation.

In temporal graphs: Any maximal γ -matching is a 4-approximation.



In normal graphs: Any maximal matching is a 2-approximation.

In temporal graphs: Any maximal γ -matching is a 4-approximation.



Theorem

Given $\gamma \geq 2$, there exists a 2-approximation for γ -MATCHING.

$\mathsf{Theorem}$

Given $\gamma \geq 2$, there exists a 2-approximation for γ -MATCHING.

- Take the first (in time) γ -edge available.
- Remove this γ -edge and every edge incident to it.
- Repeat.

Theorem

Given $\gamma \geq 2$, there exists a 2-approximation for γ -MATCHING.

- Take the first (in time) γ -edge available.
- Remove this γ -edge and every edge incident to it.
- Repeat.

$\mathsf{Theorem}$

Given $\gamma \geq 2$, there exists a 2-approximation for γ -MATCHING.

- Take the first (in time) γ -edge available.
- Remove this γ -edge and every edge incident to it.
- Repeat.

$\mathsf{Theorem}$

Given $\gamma \geq 2$, there exists a 2-approximation for γ -MATCHING.

- Take the first (in time) γ -edge available.
- Remove this γ -edge and every edge incident to it.
- Repeat.

Theorem

Given $\gamma \geq 2$, there exists a 2-approximation for γ -MATCHING.

- Take the first (in time) γ -edge available.
- Remove this γ -edge and every edge incident to it.
- Repeat.

Theorem

Given $\gamma \geq 2$, there exists a 2-approximation for γ -MATCHING.

- Take the first (in time) γ -edge available.
- Remove this γ -edge and every edge incident to it.
- Repeat.

 γ -Matching

Input: A temporal graph L and an integer k.

Question: Is L contains a γ -matching of size at least k?

Theorem

There exists a polynomial-time algorithm that for each instance (L,k), either correctly determines if L contains a γ -matching of size k, or returns an equivalence instance (L',k) such that the number of edges of L' is $2(k-1)(2k-1)\gamma^2$.

 γ -Matching

Input: A temporal graph L and an integer k.

Question: Is L contains a γ -matching of size at least k?

Theorem

There exists a polynomial-time algorithm that for each instance (L,k), either correctly determines if L contains a γ -matching of size k, or returns an equivalence instance (L',k) such that the number of edges of L' is $2(k-1)(2k-1)\gamma^2$.

γ -Matching

Input: A temporal graph L and an integer k.

Question: Is L contains a γ -matching of size at least k?

Theorem

There exists a polynomial-time algorithm that for each instance (L,k), either correctly determines if L contains a γ -matching of size k, or returns an equivalence instance (L',k) such that the number of edges of L' is $2(k-1)(2k-1)\gamma^2$.

This can be done as follows:

ullet Run the greedy algorithm ${\cal A}.$

γ -Matching

Input: A temporal graph L and an integer k.

Question: Is L contains a γ -matching of size at least k?

Theorem

There exists a polynomial-time algorithm that for each instance (L,k), either correctly determines if L contains a γ -matching of size k, or returns an equivalence instance (L',k) such that the number of edges of L' is $2(k-1)(2k-1)\gamma^2$.

- ullet Run the greedy algorithm ${\cal A}.$
- If A returns a value at least k, then answer YES.

γ -Matching

Input: A temporal graph L and an integer k.

Question: Is L contains a γ -matching of size at least k?

Theorem

There exists a polynomial-time algorithm that for each instance (L,k), either correctly determines if L contains a γ -matching of size k, or returns an equivalence instance (L',k) such that the number of edges of L' is $2(k-1)(2k-1)\gamma^2$.

- ullet Run the greedy algorithm ${\cal A}.$
- If A returns a value at least k, then answer YES.
- If A returns a value at most $\frac{k-1}{2}$, then answer NO.

γ -Matching

Input: A temporal graph L and an integer k.

Question: Is L contains a γ -matching of size at least k?

Theorem

There exists a polynomial-time algorithm that for each instance (L,k), either correctly determines if L contains a γ -matching of size k, or returns an equivalence instance (L',k) such that the number of edges of L' is $2(k-1)(2k-1)\gamma^2$.

- ullet Run the greedy algorithm ${\cal A}.$
- If A returns a value at least k, then answer YES.
- If A returns a value at most $\frac{k-1}{2}$, then answer NO.
- Otherwise, for each bottom vertex returned by \mathcal{A} , keep at most 2k-1 γ -edges incident to it.

Conclusion

- γ -MATCHING is NP-hard.
- Any maximal γ -matching is a 4-approximation.
- There exists a 2-approximation for γ -MATCHING.
- γ -MATCHING has a kernel of size $2(k-1)(2k-1)\gamma^2$.

Thanks for your attention