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Temporal graphs are life!

A temporal graph is a collection of graphs, on the same vertex set,
indexed by time.

t=1 t=2 t=3

Julien Baste Temporal matchings



Temporal graphs are life!

A temporal graph is a collection of graphs, on the same vertex set,
indexed by time.
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Some examples of used temporal graphs:

o Enron o Rollernet
o Enron Email Dataset o Rollerblading tour in Paris
o 150 users o 62 participants
o 0.5M messages o Proximity detection every 15 sec
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Who will match with me?

Goal: Generalize the MATCHING problem to temporal graphs.
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Who will match with me?

Goal: Generalize the MATCHING problem to temporal graphs.
Question: How to do it in an interesting way?
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Answer: A set of edges that, at any time, induces a matching and
such that each edge exists at each time.
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Who will match with me?

Goal: Generalize the MATCHING problem to temporal graphs.
Question: How to do it in an interesting way?

t=1 t=2 t=3

Answer: A set of edges that, at any time, induces a matching and
such that each edge exists at each time.
Issue: This is MATCHING in the intersection graph.
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Who will match with me?

Goal: Generalize the MATCHING problem to temporal graphs.
Question: How to do it in an interesting way?

t=1 t=2 t=3

Answer: A matching in the graphs of the link steams such that the
same vertex is not used twice.
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Who will match with me?

Goal: Generalize the MATCHING problem to temporal graphs.
Question: How to do it in an interesting way?

t=1 t=2 t=3

Answer: A matching in the disjoint union of the graphs of the
temporal graph.
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Who will match with me?

Goal: Generalize the MATCHING problem to temporal graphs.
Question: How to do it in an interesting way?

t=1 t=2 t=3

Answer: A matching in the disjoint union of the graphs of the
temporal graph.
Issue: This is MATCHING in the disjoint union graph.
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Who will match with me?

Goal: Generalize the MATCHING problem to temporal graphs.
Question: How to do it in an interesting way?

t=1 t=2 t=3

Answer: The edge of our ~-matching should exist during -~
consecutive times and at each time, this should be a matching.
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v-MATCHING is NP-hard

Given vy > 2, v-MATCHING is NP-hard. l
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v-MATCHING is NP-hard

Given vy > 2, v-MATCHING is NP-hard. l

The reduction is from 3-SAT.

p=WVxVy)AWVXVz),v=3
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v-MATCHING is NP-hard

Given vy > 2, v-MATCHING is NP-hard. I

The reduction is from 3-SAT.
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Solution: w, x,y, z
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Trivial approximation of v-MATCHING

In normal graphs: Any maximal matching is a 2-approximation.
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Trivial approximation of v-MATCHING

In normal graphs: Any maximal matching is a 2-approximation.
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NP-hard problem? What's next?

Given ~y > 2, there exists a 2-approximation for ~-MATCHING. l
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NP-hard problem? What's next?

Given ~y > 2, there exists a 2-approximation for ~-MATCHING. I

A greedy algorithm will do the job:

o Take the first (in time) y-edge available.
o Remove this y-edge and every edge incident to it.

o Repeat.
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NP-hard problem? What's next?

v-MATCHING
Input: A temporal graph L and an integer k.
Question: Is L contains a y-matching of size at least k7

There exists a polynomial-time algorithm that for each instance
(L, k), either correctly determines if L contains a y-matching of
size k, or returns an equivalence instance (L', k) such that the

number of edges of L' is 2(k — 1)(2k — 1)72.
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NP-hard problem? What's next?

v-MATCHING
Input: A temporal graph L and an integer k.
Question: Is L contains a y-matching of size at least k7

There exists a polynomial-time algorithm that for each instance
(L, k), either correctly determines if L contains a y-matching of
size k, or returns an equivalence instance (L', k) such that the
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v-MATCHING
Input: A temporal graph L and an integer k.
Question: Is L contains a y-matching of size at least k7

There exists a polynomial-time algorithm that for each instance
(L, k), either correctly determines if L contains a y-matching of
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Julien Baste Temporal matchings



NP-hard problem? What's next?

v-MATCHING
Input: A temporal graph L and an integer k.
Question: Is L contains a y-matching of size at least k7

There exists a polynomial-time algorithm that for each instance
(L, k), either correctly determines if L contains a y-matching of
size k, or returns an equivalence instance (L', k) such that the
number of edges of L' is 2(k — 1)(2k — 1)72.

This can be done as follows:
Run the greedy algorithm A.
If A returns a value at least k, then answer YES.

©

If A returns a value at most % then answer NO.

Otherwise, for each bottom vertex returned by A, keep at
most 2k — 1 y-edges incident to it.
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Conclusion

o v-MATCHING is NP-hard.

@ Any maximal y-matching is a 4-approximation.

o There exists a 2-approximation for v-MATCHING.

o 7-MATCHING has a kernel of size 2(k — 1)(2k — 1)~2.

Thanks for your attention
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