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Motivational Example: Disease Control

Source: The University of Hong Kong

Infectious diseases are often transmitted via physical contact.

Contact Tracing:
(1) Identify and isolate infected persons
(2) Isolate all potentially infected persons (by known cases).

At time of identification: a person may started long infection chains.
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Motivational Example: Disease Control

Can s have (indirectly) infected z?

Static graph:

s

z

Day 1:

s

z

⇒ Time information is crucial for infection transmission routes.
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Temporal Graphs – Formal Definition

A temporal graph G = (V ,(Ei )i∈[τ]) is defined as vertex set V with a list of edge sets
E1, . . . ,Eτ over V , where τ is the lifetime of G.

G:
2

1 1

1, 2

2

3

3

G1:
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E1, . . . ,Eτ over V , where τ is the lifetime of G.
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Motivation: Disease Spreading

Source: Robert Koch-Institut

Susceptible

Infectious

Recovered /
Resistent

• Infectious period:
5 days.

• Disease spreads along
paths with bounded
waiting times.
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Restless Paths – Formal Definition

A temporal (s,z)-path is a list of edges labeled with non-decreasing time steps that

• the edges form an (s,z)-path in the underlying graph

• consecutive time steps differ by at most ∆.

temporal (s,z)-paths:

s z
2

1 1

1

2

3

3

1-restless temporal (s,z)-path:

s z
2

1 1

1

2

3

3

• Temporal Paths: Xuan et al. [IJFCS ’03], Wu et al. [IEEE TKDE ’16]

• Restless Temporal Walks: Himmel et al. [Complex Networks ’19]
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Restless (s,z)-Path
Input: A temporal graph G = (V ,(Ei )i∈[τ]), two vertices s,z ∈ V , and an integer ∆.

Question: Is there a ∆-restless temporal (s,z)-path in G?
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Restless (s,z)-Path
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Invitation to Temporal Graph Parameters

Parameterized Complexity: categorize on which instances a problem is solvable (or
presumably not).
For static graph problems, literature has many parameters to do this: Vertex Cover, FVS,
Treewidth, Diameter, etc.
Temporal graph problems: often intractable:

• Temporal Vertex Cover is NP-hard on stars, [Akrida et al., ICALP ’18]

• Temporal Matching is NP-hard on path, [Mertzios et al., STACS ’20]

• Temporal Exploration is W[1]-hard for pathwidth, and [Bodlaender et al., IPL ’19]

• Restless Path is W[1]-hard for FVS.

With “+τ”: many problems become FPT, e.g., Restless Path with FVS+τ.

 We need new parameters to understand this gap.

Today: Lifting Feedback Vertex Set for path-related temporal problems.

Philipp Zschoche (TU Berlin) τ := lifetime 8 / 12
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Timed Feedback Vertex Set I

Underlying FVS:
min |S| : G↓−S is a forest.

Timed FVS:
Idea: delete vertex appearances
Formal: min. size X ⊆ V × [τ] such that
G↓(G−X ) := (V ,E ′) is a forest,

(v , t)

where E ′ := {{v ,w} | ∃t : {v ,w} ∈ Et ∧{(v , t),(w , t)}∩X = /0}.

Structural properties: Similar to FVS in static graphs.

Observation

Underlying FVS ≤ Timed FVS ≤ Underlying FVS ·τ

algorithmically useful: NP-hard, but FPT. O∗(4x ) time

Philipp Zschoche (TU Berlin) τ := lifetime 9 / 12
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How to use Timed FVS

Theorem

Restless Path is FPT parameterized by Timed FVS.

Alg. Outline: Let X be the Timed FVS.
(1) Guess whether (v , t) is Incoming, Outgoing, or unused.
(2) Drop unused (v , t) from temporal graph.
(3) Guess order of the remainder in X .
(4) Check for time edges between consecutive (v , t),(w , t) ∈ X .

(5) Find “unknown parts” with Multicolored Ind. Set on Chordal Graphs.

(v , t1) ∈O (w , t2) ∈O
?

max{t1, t2−∆} ≤ t ′ ≤min{t2, t1 + ∆}?

Philipp Zschoche (TU Berlin) τ := lifetime 10 / 12
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Resolve Unknown Parts
First, if (v , t) is still in X remove v from T↓ := G↓(G−X ).

s

For time edge e1 = ({v ,x}, t1) and e2 = ({w ,y}, t2):

• Is departure time t1 and arrival time t2 “valid” (4 cases again)?

• Is there a path P from x to y in T↓?

• Is there a ∆-restless path v to w in G[P] plus e1,e2?

Intersection graphs of paths in trees are chordal.

Lemma

Restless Path linear time
solvable on path.

Lemma (Bentert et al., J. Scheduling 19)

Multicolored Ind. Set on Chordal Graphs is FPT with # of colors.

Philipp Zschoche (TU Berlin) τ := lifetime 11 / 12
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Conclusion

static

W[1]-hard:

para-NP-hard:
Distance to

Clique

Vertex Cover

Timed FVS

Distance to
Disjoint Paths

Treedepth

FES

Max
Degree

Restless
Path Length

FVS
Pathwith

Treewidth

Lifetime

Future: temporal parameters!
How to design? How to compute? Experiments? Thank you!
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