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CENTRALISED: WHO GETS TO PRINT?

A Network A Printer

Centralised Algorithms:
Single computer with the whole
problem instance/data available. Q

which one of them will get the printer?




DISTRIBUTED: WHO GETS TO PRINT

A Network A Printer

DeCentralised /

Distributed Algorithm: which one of us will get the
Multiple “‘computers’ each printer?

with it's own local view / data.
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DISTRIBUTED IN A DYNAMIC/FAULTY ENVIRONMENT: AY YE PRINTER!

A Printer

Fault-Tolerant/Dynamic Alvorithmszwhich one of us will get the

In faulty /dynamic environments printer despite failures or

changes?
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GRAPH RECONSTRUCTION
(SELF-HEALING) GAME!




MOTIVATIONS

* Responsive Repair: As in the human brain! (rewire, don’t reboot!)

* Autonomic systems:

Self- Self-
Optimizing  Protecting

e Churn in P2P/Reconfigurable networks: Nodes come and go!
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SELF-HEALING (ON NETWORKS)

# Start: a distributed network G

Run forever or till possible
{
# Attack: An adversary inserts or deletes one node per round

# Healing: After each adversary action, we add and/or drop some edges
between pairs of nearby nodes, to “heal” the network

}

* Node dynamic as opposed to edge dynamic!
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SELF-HEALING ILLUSTRATION




SELF-HEALING ILLUSTRATION




SELF-HEALING ILLUSTRATION




SELF-HEALING ILLUSTRATION




SELF-HEALING ILLUSTRATION
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SELF-HEALING ILLUSTRATION




SELF-HEALING ILLUSTRATION
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SELF-HEALING ILLUSTRATION

and so on ....
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PROBLEM

Go

Degree(v,Gp) = 2 Degree(v,G3) = 5
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POSSIBLE HEALING TOPOLOGIES:

LINE GRAPH
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Low degree increase but diameter/ distances blow up
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POSSIBLE HEALING TOPOLOGIES:

STAR GRAPH

=
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Low distances but degree blows up
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CHALLENGE 1: PROPERTIES CONFLICT

 Low degree increase => high diameter/stretch/
poorer expansion?

* Low diameter => high degree increase?
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CHALLENGE 2: LOCAL FIXING OF GLOBAL PROPERTIES

% Limited global Information with nodes

* Limited resources and time constraints




SELF-HEALING(TOPOLOGICAL) GOALS

# Healing should be fast.

# Certain (topological) properties should be maintained within
bounds:

* Connectivity
* Degree (quantifies the work done by algorithm)
* Diameter/ Stretch

* Expansion/ Spectral properties
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DASH: DEGREE ASSISTED SELF-HEALING™

Original Graph, n = 100; t =0

Algorithm Intuition:

Keep track of load (degree increase) of nodes
After each deletion, Insert a binary tree of
neighbours of deleted node with more
loaded nodes as leaves

*Jared Saia, AT, Picking up the Pieces: Self-Healing in reconfigurable networks. IPDPS 2008
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DASH: DEGREE ASSISTED SELF-HEALING

® Certain neighbours of the deleted node reconnect as a
tree sorted on degree increase; degree of any vertex
increases by at most 2 log n; no guarantees on diameter.

b+1
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DASH: DEGREE ASSISTED SELF-HEALING

Healed Graph, n = 70; t =30
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Algorithm:

- Keep track of load (degree increase) of nodes

After each deletion, Insert a binary tree of
neighbours of deleted node with more
loaded nodes as leaves

*Limits degree increase to O(log n) over series
of deletions; empirical analysis of stretch over
various attack strategies done.




DASH: DEGREE ASSISTED SELF-HEALING

Graph, n = 50; t =50




DASH: DEGREE ASSISTED SELF-HEALING

N

Graph, n=30;t =70 Graph, n = 20; t =80 Graph, n = 10; t =90
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SIMULATIONS: DEGREE
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SIMULATIONS: STRETCH

Stretch: Maximum over all pairs of nodes u,v : Distance(Gy,u,v) / Distance (Go, u,v)
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VIRTUAL GRAPHS HEALING APPROACH

Virtual Graph (VG)

Mappings

Method: Setup virtual graph (VG) on the real graph
(RG). Maintain (self-heal) VG.

Required: If property A is maintained on VG, it is also
maintained on RG (i.e. the correct mappings).



Homomorphism: Given G = (Vi, E1), G2 = V3, E»
a map such that {v,w} € E1 = {f(v), f(w)} € Es
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Virtual Graph ‘Real’ Network

A virtual tree (left) and its homomorphic image (right)



OUR SELF-HEALING ALGORITHMS

Non-Virtual Virtual

Compact

DASH—:—Forglvmg Tree Routing

\
(Connectivity, - I*Stretch \ %
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*Tom Hayes, Jared Saia, AT, The forgiving tree: a self-healing distributed data structure. PODC 2008



THE FORGIVING TREE:
MODEL

® Start: a network Go.
® Nodes fail in unknown order vq, vo, ..., v,

® After each node deletion, we can add and/or drop
some edges between pairs of nearby nodes, to “heal”
the network
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THE FORGIVING TREE:
MAIN RESULT

® A distributed algorithm, Forgiving Tree such that, for any
network G with max degree D, for an arbitrary sequence
of t deletions:

® G; stays connected
® Diameter(Gy) < log(D). Diameter(Gy)
® For any node v in G; degree(G; V) < degree(Gov) + 3

® Each repair takes constant time and involves O(D) nodes.
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THE FORGIVING TREE:
MAIN RESULT

® A distributed algorithm, Forgiving Tree such that, for any
network G with max degree D, for an arbitrary sequence
of t deletions:

® G; stays connected

® Diameter(Gy) < log(D). Diameter(Gy)
Matching

® For any node v in G; degree(G;Vv) < degree(Gov) + 3 lower bound

® Each repair takes constant time and involves O(D) nodes.
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THE LOWER BOUND

® Adversary can force, for any self-healing
algorithm:

- Degree increase < ov= stretch of Q(log ,(n — 1))

Degree(v) = A
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THE FORGIVING TREE: MOTIVATIONS

® Trees are the “worst case” for maintaining connectivity.
Suppose we are given one.

® Our algorithm is based on maintaining a virtual tree. This
helps us keep track of which vertices can afford to have
their degrees increased, and also avoid blowing up
distances.
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FT: FIRST APPROXIMATION

® Find a spanning tree of G.

® Choose some vertex to be the root, and orient all edges
toward the root.

® When a node is deleted, replace it by a balanced binary
tree of “virtual nodes”

® Short-circuit any redundant virtual nodes

® Somehow the surviving real nodes simulate the virtual
nodes
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Short-circuiting a redundant virtual node
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Algorithm in action

Node v deleted:

.
.
.

e

Cdefrgn
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Node p deleted:

Amitabh Trehan o Algorithmic Aspects of Temporal Graphs Il



Node d deleted:

Amitabh Trehan o Algorithmic Aspects of Temporal Graphs Il



THE FT: MAIN RESULT
INTUITION

® A distributed algorithm, Forgiving Tree such that, for any
network G with max degree D, for an arbitrary sequence
of t deletions:

® G, stays connected: Since the healing graph is connected

® Diameter(G) < log(D). Diameter(Go): The largest healing
binary tree is on D nodes and never increases!

® For any node v in G; degree(Gv) < degree(Gpv) + 3:
Every real node simulates at most one virtual node!

® Each repair takes constant parallel time and involves
O(D) nodes: By the wills mechanism (not discussed)
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FORGIVING GRAPH™

*Tom Hayes, Jared Saia, AT, The Forgiving Graph: A distributed data structure for low stretch under adversarial attack. PODC 2009, Distributed Computing 2012



FORGIVING GRAPH (FG)

* FG extends Forgiving Tree:
Fully dynamic: has both insertions and deletions

Bounds the stronger property of stretch (as opposed to
diameter only)

More complex and slower than Forgiving Tree
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FORGIVING GRAPH: INSERTIONS PERMITTED

Big question:
How to analyse a self-healing algorithm which has insertions?

Hint: What can G 0 look like?
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THE FG ALGORITHM: OUTLINE

® Node inserted without restrictions.

® When a node is deleted, replace it by a half-full
tree(described later) of “virtual nodes”.

® |f two half-full trees become neighbors, ‘merge’ them to
form a new half-full tree.

® Somehow the surviving real nodes simulate the virtual
nodes
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Replacing v by a Reconstruction Tree (RT) of virtual nodes
(in oval). The ‘real’ neighbors are the leaves of the tree.
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Merging two reconstruction trees on deletion of x
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ANALYSIS FROM VIRTUAL NODES

® A virtual node has degree at most 3, since internal node
of a binary tree.

® Each real node will simulate at most one virtual node per
neighbor.

® After any sequence of deletions, the distance between
two nodes can only increase by a factor of the longest
path in the largest RT i.e. log n.
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HALF-FULL TREES (HAFTS)

/\/“ \\\\\\ ./SM W;e.
NAAXT

® A rooted binary tree in which every non-leaf node v has
the following properties:

® v has exactly two children.

® The left child of v is the root of a complete binary
subtree containing at least half of v's children.
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OPERATIONS ON HAFTS

® Merge: Recombine hafts to make new haft. Analogous to
binary addition.

® Strip to get forest of complete trees.

® Join adjacent trees with a new node as root, larger
tree as left child.

SN m s o kS

0101 + 0010 + 0001 = 1000
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FG IN ACTION
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Node v deleted ...




replaced by RT(v)



Node y deleted...



replaced by RT(y)



Node w deleted...



RT(v), RT(w) and u merge.



WHERE’S THE HAFT?




COMPARING RESULTS

G': graph of only insertions

A G: healed network
and original nodes
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MAIN RESULT

® A distributed algorithm, Forgiving Graph
such that:

® Degree increase: Degree of node in G < 3
times degree in G’




MAIN RESULT (CONTD.)

® Stretch: Distance between any two nodes
in G < log n times their distance in G’




FG: RESULTS AND OPTIMALTIY

® A distributed algorithm, Forgiving Graph such that:

® Degree of node in G < 3 times degree in G’

Matching
® Distance between any two nodes in G < log n @ ower bound

times their distance in G’

® Cost: Repair of node of degree d requires at most
O(d logn) messages of length O(log2n) and time
O(logd logn)
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LOWER BOUND AGAIN

« Stretch: Distance between any two nodes in Gt < log n times
their distance in G’y

Gy

d(u,v) = 2 d(u,v)<2logn
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LOWER BOUND AGAIN

» Adversary can force, for any self-healing algorithm:

Degree increase.< (x = stretchof Q(log (n—1))

Degree(v) = A

BFS Tree of y in FGr
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PROVE IT!

® A distributed algorithm, Forgiving Graph such that,
at time T:

® Degree of node in GT < 3 times degree in G't

® Distance between any two nodes in Gr < logn
times their distance in G't

® Cost: Repair of node of degree d requires at most
O(d logn) messages of length O(log2n) and time
O(log d log n)
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® Degree increase: Degree of node in Gy < 3 times degree
in G'TZ

i. An internal node of a binary tree has degree at most 3

ii. Each edge in G't has at most one corresponding helper
node in FGt




OUR SELF-HEALING ALGORITHMS

Non-Virtual Virtual

Compact
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TEMPORAL QUESTIONS AND FUTURE WORK

What is the best way to analyse fully node dynamic algorithms (say, self-healing
graphs)?

Can edge dynamic temporal theory help? In some use cases, possibly node
dynamic are contained in Edge dynamic!

Other interactions between distributed algorithms and temporal theory
Temporal self-healing and memory constrained Processes? - Routing* etc...

A general theory for dynamicity - routing schemes as compositions/operators on
self-healing networks

*Armando Castanader, Danny Dolev, AT. Compact routing messages in self-healing trees. ICDCN 2016, Theor. Comp. Sci. 2018
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THANK YOU
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