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Main Question
How can we measure the similarity / distance between two
temporal graphs G, H?
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Graph distance using vertex signatures
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Graph distance using vertex signatures

dist(G ,H) = min
M∈M

CM(G ,H)

Jouili and Tabbone (GbRPR 2009).
Computation in cubic time using Jonker-Volgenant
(or Hungarian).
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Time Warping
Problem: The two temporal graphs may have different

lifetimes.
Even worse, they can have different
(non-homogeneous) time scales.

Solution: Time warping — assign each layer to the other
one it resembles most (no crossings allowed!).
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dtgw-distance

dist(G ,H) =

min
W

min
M∈M

t u W

CM(G

t

,H

u

)

all time warpings between the two layer sets

Good news: Time warping can be solved by a dynamic
program in quadratic time …

Bad news: … if all pairwise distances are known in advance.
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time warping

vertex-vertex distances layer-layer distances

vertex matching

required for
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Hardness

◮ Computing dtgw-dist(G,H) is NP-hard …

… and probably1 impossible in o #vertices #layers dtgw-dist

… even if you limit the time warping to be “nice”
… even if your graphs have maximum degree one.

But …

… you can check in polynomial time whether
dtgw-dist .

1assuming ETH
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◮ … even if you limit the time warping to be “nice”
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Make an educated guess on one of these and start cycling.
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Experiment: Noise
1. Take a couple of real world temporal graphs2.

2. Make multiple copies of each.
3. Add up to 30% noise (change edges, delete layers).
4. Compute all pairwise distances with v deg v .

Result

2sociopatterns.org
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Experiment: De-anonymization

1. Vertices: People at a conference.

2. Two temporal graphs:
2.1 A: edges = face-to-face contacts
2.2 B: edges = proximity

3. Compute dtgw-distance.
4. Look at the vertex matching.

Result
86% of people correctly identified, using only

v deg v .

Robust against misaligned times.
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DTGW-distance

…can help you compare structures that change over time
(aka temporal graphs).
…is very hard in theory but mostly easy in practice.

Open questions

Is “dtgw-dist d” decidable in f d poly ?
Can you find approximation algorithms with guaranteed
approximation quality?
Which vertex signatures work best in different settings?
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