Multimodal Dynamic Journey Planning

Kalliopi Giannakopoulou, Andreas Paraskevopoulos & Christos Zaroliagis

Journey Planning

Journey Planners

compute best journeys in public (scheduled-based) transport networks

Optimization problems (also in a multimodal setting)

- *Earliest Arrival Problem (EAP)*: find the best journey from *A* to *B* that minimizes the arrival time at *B*, when departing from *A* after time *t*
- *Minimum Number of Transfers Problem (MNTP)*: find the best journey from *A* to *B* that minimizes the number of vehicle transfers, when departing from *A* after time *t*

Journey Planning

Journey Planners

compute best journeys in public (scheduled-based) transport networks

Optimization problems (also in a multimodal setting)

- *Multicretiria Problem (MP)*: find the optimal Pareto set of journeys from *A* to *B* minimizing the EA and MNT criteria
- *Profile query Problem (PP)*: find the set of the earliest arrival journeys from A to B, departing from A within a given departure time interval $I=[t_1,t_2]$

Journey Planning

Challenges in scheduled-based journey planning:

- Inherent time-dependent component & transfer time among vehicles: complex modeling
- Accommodate multimodality:
 - Scheduled-based transport across multiple modes (eg train, bus, tram)
 - Unrestricted/Restricted (wrt departing time) traveling (walking, EVs)
- Accommodate **delays** of scheduled vehicles so that timetable information is correctly and efficiently updated
- **High query demand**: real-time answering (also in mobile devices)

State-of-the-Art

- Journey Planning (public transport)
 - Array-based approaches
 - RAPTOR [Dibbelt et al 2012]
 - Connection Scan Algorithm [Dibbelt et al 2013]
 - Public Transit Labeling [Dibbelt et al 2015]
 - Trip-based public transit routing [Witt 2015]
 - Graph-based approaches
 - Time-expanded (TE) realistic model [Pyrga et al 2004 & 2008]
 - Reduced TE (TE-Red) [Pyrga et al 2008; Cionini et al 2014 & 2017]
- Dynamic (unimodal) journey planning
 - Dynamic TE-Red [Cionini et al 2014 & 2017]
 - Dynamic Timetable Model (DTM) [Cionini et al 2014 & 2017]
- Multimodal Journey Planning
 - McRAPTOR [Delling at el 2013; Dibbelt 2016]
 - Questions
 - Can **graph-based** approaches be competitive to SotA?
 - Dynamization?

Main Contributions

- Multimodal Dynamic Journey Planner
 - New model: *Multimodal DTM* (extension of Dynamic Timetable Model)
 - Efficient **core engine** for real-time response and update requirements
 - Comparative experimental study in large metropolitan networks (London, Berlin)
 - Multimodal EAP, multicriteria & profile queries: competitive (with SotA) even in the case of unlimited/limited walking or Evs
 - Limited Walking Query: < 16 msec
 - **Update:** < 0.17 msec

Time-Expanded Realistic Model

[Pyrga, Schulz, Wagner & Z, 2004 & 2008]

- Node **blue**/**grey**/**yellow** = arrival/transfer/**departure**
- Arc blue/green/black = connection/arrival-departure/transfer-x
- C: connections; n = # nodes; m = # arcs;
- Space: O(|C|) $(n = 3 | C|; 4 | C| \le m \le 5 | C|)$

Dynamic Timetable Model (DTM)

[Cionini, D'Angelo, Emidio, Frigioni, Giannakopoulou, Paraskevopoulos & Z, 2014 & 2017]

- node blue/yellow ≡ switch/departure
- arc brown/green/other ≡
 switch/vehicle/connection
- Space: O(|C|) (n = |B|+|C|; m ≤ 3 |C|)
 B: stations; C: connections; n = # nodes;
 m = # arcs;

• The departure nodes are ordered by **increasing arrival time at the next station**

New: Multimodal DTM

- node blue/yellow = switch/departure (ordered by arrival time)
- arc brown/green/other ≡
 switch/vehicle/connection
- connection arc dotted / solid ≡
 unrestricted-departure /
 restricted-departure
- grouping blue / orange ≡
 train / bus travelling
- Space: O(|C|) $(n = |B| + |C|; m \le 3 |C|)$

- Grouping of Departure nodes
 - Γ_1 (primary): departure nodes with the same head switch node
 - Γ_2 (secondary grouping within Γ_1): departure nodes of the same transport mode
 - Departure nodes within Γ_2 are ordered by increasing arrival time at the next station

Multimodal DTM - Query

Unicriteria Query Algorithm (modified Dijkstra)

- **Start** at s_s at departure station S.
- **Stop** when S_T at arrival station T is settled.
- If switch node settled then set switch arc weights:
 departure event reachable in current time period
 dep. time > current time + transfer time
- **Skip** unselected transportation means and past departures

Multicriteria Query Algorithm (modified multicriteria Dijkstra)

- Criteria: EA & MNT
- Transfer weight: 1 for all switch edges;

0, otherwise

Restriction: Non-dominating EA & MNT journeys with arrival time $< P \cdot A_{min}$

A_{min}: minimum arrival time, P: threshold

Heuristic Improvements

- Pruning (EAX)
- Exploiting station topology
- ALT

Earliest Arrival Index (EAX)

Partially encodes the departure time ordering (efficient search on valid non-past routes) and the arrival time ordering (efficient search on optimal routes)

For each consecutive pair (d_i, d_{i+1}) in EAX: d_{i+1} has greater departure and arrival time than d_i .

depNode	depTime	arrTime
d15	15	20
d20	20	37
d35	35	46

e.g. if arrival/starting time is 25 (> 20) ⇒ search for valid and optimal paths after d20

Multimodal DTM - Update

∀Affected station

- Update
 - Arc weights of arrival-departure arcs
 - Time associated with departure nodes
 - Repair the node arrival-time ordering within the affected groups

- Delay: 20 mins
- Red: updated arc weights, time associated with affected departure nodes
- Topology does NOT change

11

MDTM - Experimental Setup

		TE		TE (red)		DTM		MDTM		
City	Stations	Conn.	V	E	V	E	V	E	V	E
Berlin	12,838	4,322,549	12,967,647	21,612,745	8,645,098	17,024,138	4,335,387	12,701,695	4,335,387	12,708,568
London	20,843	14,064,967	42,194,901	70,324,835	28,129,934	55,758,468	14,085,810	41,837,355	14,085,810	41,856,048

	Berlin	London
Bus	76%	98%
Train	15%	2%
Tram	9%	

	Вє	erlin	London		
	V	E	V	E	
road		39		60	
pedestrian L-Walk		2,381		37,226	
pedestrian U-Walk	932,108	1,059,556	1,520,056	1,653,052	

CPU: Intel Quad-core i5-2500K 3.30GHz

RAM: 32GB

Data: GTFS (Public transport timetables)

OSM (road and pedestrian networks)

 Driving-paths: free flow speed travelling between stops via shared EVs.

10 EV-stations, driving travel-time \leq 1h

Foot-paths: walking speed 1m/s

☐ Limited walking (L-Walk): Walk paths between stops with travel time ≤ 10 mins

☐ Unlimited walking (U-Walk): The full pedestrian network is embedded and each switch node is connected with the nearest pedestrian node

MDTM - Experimental Evaluation

			Experime					
Algorithm MC			Travel Modes				Query [ms]	
			Public Transit	Walk	EV/Car	Cycle	L-Walk	U-Walk
	TE-QH-ALT [1]		•				6.28	
Berlin	DTM-QH-ALT [1]		•				11.66	
Be	MDTM-QH-ALT		•				5.71	
	MDTM-QH-ALT		•	•	•		8.15	103.46
	TE-QH-ALT [1]		•				5.09	
	DTM-QH-ALT [1]		•				9.81	
	MDTM-QH-ALT		•				4.01	
London	MDTM-QH-ALT		•	•	•		6.02	107.93
Lon	McMDTM-QH-ALT-1.0	•	•	•	•		6.22	215.27
	McMDTM-QH-ALT-1.2	•	•	•	•		15.40	360.56
	MCR-ht [2]	•	•			•		361.23
	MR-∞-t10 [2]	•	•			•	21.47	
	PfMDTM-QH-ALT [2h]		•	•	•			2,150.2
	PfMDTM-QH-ALT [24h]		•	•	•			29,365.4

Red: new algorithms 10K earliest arrival queries

MDTM - Experimental Evaluation

	Algorithm	Update [µs]	
	TE-UH	249.3	
Berlin	DTM-U	85.7	
	MDTM-U	87.2	
	TE-UH	484.6	
London	DTM-U	148.1	
	MDTM-U	163.1	

random [1, 360] mins delays in 10K randomly chosen elementary connections

Conclusion & Future Work

Multimodal Dynamic Journey Planner

- Real-time query responses for

Future work

