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Temporal Graphs

Temporal graph (Dynamic, time-varying graph)

A graph in which the edge set can change in every (time) step.

Step 0:
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Temporal Graphs

Temporal graph (Dynamic, time-varying graph)

A graph in which the edge set can change in every (time) step.

Step 2:
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Temporal Graphs

Temporal graph (Dynamic, time-varying graph)

A graph in which the edge set can change in every (time) step.

Underlying graph

The graph with all edges that are present in at least one step.
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Temporal (Time-Respecting) Path

Time edge

A pair (e, t) where e is an edge of the underlying graph and t
is a time step when e is present.

Temporal path (journey)

A sequence of time edges (e1, t1), . . . , (ek , tk) such that
(e1, e2, . . . , ek) is a path in the underlying graph and
t1 < t2 < · · · < tk .

Example:

3
4 7 9
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Temporal (Time-Respecting) Path

Time edge

A pair (e, t) where e is an edge of the underlying graph and t
is a time step when e is present.

Temporal path (journey)

A sequence of time edges (e1, t1), . . . , (ek , tk) such that
(e1, e2, . . . , ek) is a path in the underlying graph and
t1 < t2 < · · · < tk .

Example:

3
4 7 9

Temporal walk: temporal path where vertices may repeat
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Temporal Graph Exploration

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0, find a fastest temporal
walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse
an edge or wait. Minimize time when last vertex is visited.

Thomas Erlebach and Jakob Spooner ICALP Workshop, Prague, 9 July 2018 4.1 / 20



Temporal Graph Exploration

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0, find a fastest temporal
walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse
an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Thomas Erlebach and Jakob Spooner ICALP Workshop, Prague, 9 July 2018 4.2 / 20



Temporal Graph Exploration

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0, find a fastest temporal
walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse
an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Michail and Spirakis [MFCS’14]

It is NP-complete to decide if a temporal graph can be explored
if it need not be connected in each step.
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Temporal Graph Exploration

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0, find a fastest temporal
walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse
an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Michail and Spirakis [MFCS’14]

It is NP-complete to decide if a temporal graph can be explored
if it need not be connected in each step.

⇒ Like Michail and Spirakis, we consider temporal graphs that
are connected in each step and have lifetime ≥ n2.
(Note: We consider undirected graphs only.)
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Temporal Graph Exploration

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0, find a fastest temporal
walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse
an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Reachability lemma: Let G be a temporal graph with n vertices.

Agent can reach any vertex v from vertex u in n time steps.

Proof. Since G always has a u-v path, the set of vertices
reachable from u increases in each step until v is reached.
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Temporal Graph Exploration

Temporal graph exploration problem (TEXP)

Starting at a given vertex s at time 0, find a fastest temporal
walk that visits all vertices.
Equivalently: Schedule an agent: In each time step, traverse
an edge or wait. Minimize time when last vertex is visited.

We assume: The whole temporal graph is known in advance.

Reachability lemma: Let G be a temporal graph with n vertices.

Agent can reach any vertex v from vertex u in n time steps.

Corollary

Any temporal graph can be explored in n2 time steps.
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Example

Instance of Temporal Graph Exploration problem:

Step 0 Step 1 Step 2

Step 3 Step 4 Step 5

Thomas Erlebach and Jakob Spooner ICALP Workshop, Prague, 9 July 2018 5.1 / 20



Example

Instance of Temporal Graph Exploration problem:

Step 0 Step 1 Step 2

Step 3 Step 4 Step 5

Thomas Erlebach and Jakob Spooner ICALP Workshop, Prague, 9 July 2018 5.2 / 20



Example

Instance of Temporal Graph Exploration problem:

Step 0 Step 1 Step 2

Step 3 Step 4 Step 5

Thomas Erlebach and Jakob Spooner ICALP Workshop, Prague, 9 July 2018 5.3 / 20



Example

Instance of Temporal Graph Exploration problem:

Step 0 Step 1 Step 2

Step 3 Step 4 Step 5

Thomas Erlebach and Jakob Spooner ICALP Workshop, Prague, 9 July 2018 5.4 / 20



Example

Instance of Temporal Graph Exploration problem:

Step 0 Step 1 Step 2

Step 3 Step 4 Step 5

Thomas Erlebach and Jakob Spooner ICALP Workshop, Prague, 9 July 2018 5.5 / 20



Example

Temporal exploration completed in Step 5.

Step 0 Step 1 Step 2

Step 3 Step 4 Step 5
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Previous Work on TEXP

Avin, Koucký, Lotker, ICALP’08:

Analyze cover time of random walk in temporal graph
(with self-loops)

Star construction shows that simple random walk may
take Ω(2n) steps

Lazy random walk that leaves v only with probability
deg(v )/(∆ + 1) has cover time O(∆2n3 log2 n)

Michail and Spirakis, MFCS’14:

D-approximation algorithm for temporal graph
exploration, where D is the dynamic diameter
Note: 1 ≤ D ≤ n − 1, can be equal to n − 1

No (2− ε)-approximation algorithm unless P = NP

(1.7 + ε)-approximation algorithm for temporal TSP with
dynamic edge weights in {1, 2}
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Previous Work on TEXP

E, Hoffmann, Kammer, ICALP’15:

Instances of TEXP that require Ω(n2) steps

No O(n1−ε)-approximation algorithm unless P = NP

Results for restricted underlying graphs:

treewidth k : O(n1.5k1.5 log n) steps
planar: O(n1.8 log n) steps
cycle, cycle with chord: O(n) steps
2× n grid: O(n log3 n) steps
Instances of TEXP where underlying graph is planar with
∆ = 4 that require Ω(n log n) steps

Further results on temporal graphs with randomly present
edges or regularly present edges.
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TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let c0 be the center of a star in step 0.

c2

c0

c1

c3

c4

c5

v0

v1

v2

v3

v4

v5
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TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let c1 be the center of a star in step 1.

c2

c0

c1

c3

c4

c5

v0

v1

v2

v3

v4

v5
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TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let c2 be the center of a star in step 2.

c2

c0

c1

c3

c4

c5

v0

v1

v2

v3

v4

v5
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TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let c3 be the center of a star in step 3.

c2

c0

c1

c3

c4

c5

v0

v1

v2

v3

v4

v5
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TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let c4 be the center of a star in step 4.

c2

c0

c1

c3

c4

c5

v0

v1

v2

v3

v4

v5
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TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let c5 be the center of a star in step 5.

c2

c0

c1

c3

c4

c5

v0

v1

v2

v3

v4

v5
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TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let c0 be the center of a star in step 6.

c2
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c4

c5

v0
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v3

v4

v5
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TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let ci be the center of a star in step i , n

2
+ i , n + i , . . .

c2

c0

c1

c3

c4

c5

v0

v1

v2

v3

v4

v5
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TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let ci be the center of a star in step i , n

2
+ i , n + i , . . .

Agent starts in c0. Let us only focus on exploring .
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v4
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TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let ci be the center of a star in step i , n

2
+ i , n + i , . . .

After returning to ci , wait until ci is center again.

c2

c0

c1

c3

c4

c5

v0

v1

v2

v3

v4

v5

Thomas Erlebach and Jakob Spooner ICALP Workshop, Prague, 9 July 2018 8.15 / 20



TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let ci be the center of a star in step i , n

2
+ i , n + i , . . .

After returning to ci , wait until ci is center again.

c2

c0

c1

c3

c4

c5

v0

v1

v2

v3

v4

v5

Thomas Erlebach and Jakob Spooner ICALP Workshop, Prague, 9 July 2018 8.16 / 20



TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let ci be the center of a star in step i , n

2
+ i , n + i , . . .

After returning to ci , wait until ci is center again.
Each move from x to y with x 6= y : Ω(n) time steps.
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TEXP instances that require Ω(n2) steps

Consider the temporal graph below that is a star in each step.
Let ci be the center of a star in step i , n

2
+ i , n + i , . . .

After returning to ci , wait until ci is center again.
Each move from x to y with x 6= y : Ω(n) time steps.
In total, Ω(n2) time steps.

c2

c0

c1

c3

c4

c5

v0

v1

v2

v3

v4

v5
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Observations

The TEXP instances requiring Ω(n2) steps have these
properties:

The underlying graph is very dense (Ω(n2) edges).

The graph in each step has a high-degree vertex
(the center of the star has degree n − 1).

The graph changes in every step.

Questions

What if we place a restriction on one of these?
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Observations

The TEXP instances requiring Ω(n2) steps have these
properties:

The underlying graph is very dense (Ω(n2) edges).

The graph in each step has a high-degree vertex
(the center of the star has degree n − 1).

The graph changes in every step.

Questions

What if we place a restriction on one of these?

Today: What if the graph in each step has bounded
degree?
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Bounded Degree Graph Exploration

Temporal graph of bounded degree

A temporal graph G has degree bounded by ∆ if the graph in
each step has maximum degree at most ∆.

Question: What is the worst-case exploration time for
temporal graphs of bounded degree?

We know:

Upper bound O(n2) holds for arbitrary graphs.

Lower bound Ω(n log n) for underlying planar graphs with
maximum degree ∆ = 4.
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Main Result

Theorem

A temporal graph G with degree bounded by ∆ can always be
explored in

O

(

log∆ ·
n2

log n

)

steps.

Remarks:

For log∆ = o(log n), the exploration time is o(n2).

For ∆ = O(1), the exploration time is O( n2

log n
).

There is still a huge gap to the lower bound of Ω(n log n).
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Proof Overview

Theorem

A temporal graph G with degree bounded by ∆ can be

explored in O
(

log∆ · n2

log n

)

steps.

Proof.

While there are Ω( n

log∆ n
) unexplored vertices, visit

O(log∆ n) unexplored vertices in O(n) steps.

⇒ O

(

n

log∆ n
· n

)

= O

(

log∆ ·
n2

log n

)

steps

Visit the last O( n

log∆ n
) unexplored vertices in O(n) steps

per vertex.

⇒ O

(

n

log∆ n
· n

)

= O

(

log∆ ·
n2

log n

)

steps
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Visiting many vertices quickly

Lemma (Main Lemma)

While there are Ω( n

log∆ n
) unexplored vertices, we can visit

O(log∆ n) unexplored vertices in O(n) steps.

Proof idea.

Assume current vertex is v , current step is t.

Let U be the current set of unexplored vertices.

Claim: There exists a walk W starting at some u ∈ U at
time t + n that visits O(log∆ n) unexplored vertices in
O(n) steps.

⇒ Move from v to u during time t to t + n, then follow W .
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Auxiliary Lemma

Lemma (Auxiliary Lemma)

Let T be a set of k = |T | unexplored vertices. There are Ω( k

∆
)

disjoint pairs (u, v ) ∈ T 2 s.t. u can reach v in O(∆n

k
) steps.
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Proof of Claim

Claim

There is a walk W starting at some u ∈ U at time t + n that
visits O(log∆ n) unexplored vertices in O(n) steps.

Proof sketch.

O(∆n

k
)

O(∆
2n

k
)

O(∆
3n

k
)
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Proof of Claim

Claim
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Proof sketch.
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Proof of Claim

Claim

There is a walk W starting at some u ∈ U at time t + n that
visits O(log∆ n) unexplored vertices in O(n) steps.

Proof sketch.
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Proof of Auxiliary Lemma

Lemma (Auxiliary Lemma)

Let T be a set of k = |T | unexplored vertices. There are Ω( k

∆
)

disjoint pairs (u, v ) ∈ T 2 s.t. u can reach v in O(∆n

k
) steps.

Proof.

Maintain a home set Hv ⊆ T of each v ∈ L = V \ T :

0 ≤ |Hv | ≤ 2
Each u ∈ Hv can reach v by the current time step.

If a vertex w ∈ T is adjacent to a vertex v ∈ L with
u ∈ Hv for some u 6= w , a pair (u,w) is formed.

w {  } uu

v
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Potential function

Potential function Φ =
∑

v∈L
(|Hv |+ 1) ≤ 3n.

We can show:

Φ increases by ≈ k

2∆
in each step.

Formation of a pair decreases potential by at most 20∆n

k
.

If fewer than k

20∆
pairs were formed in 10∆n

k
steps, we

would have

Φ >
10∆n

k
·
k

2∆
−

k

20∆
·
20∆n

k
= 5n − n > 3n ,

a contradiction.
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Obtaining the potential increase

Consider spanning tree T of current graph.

Find Ω( k

∆
) disjoint paths Pu,w between vertices u,w ∈ T .

On path Pu,w , increase potential of one vertex v ∈ L by
adding u or w to its home set Hv (and possibly adjusting
other home sets).

Example:

u w

{u} {u, a}{u} {a, b} {w}
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∆
) disjoint paths Pu,w between vertices u,w ∈ T .

On path Pu,w , increase potential of one vertex v ∈ L by
adding u or w to its home set Hv (and possibly adjusting
other home sets).

Example:

u w

{u} {a, b}{u} {u, a}

a

{w}
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Obtaining the potential increase

Consider spanning tree T of current graph.

Find Ω( k

∆
) disjoint paths Pu,w between vertices u,w ∈ T .

On path Pu,w , increase potential of one vertex v ∈ L by
adding u or w to its home set Hv (and possibly adjusting
other home sets).

Example:

add uu w

{u} {u, a} {u, b} {a} {w}
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Obtaining the potential increase

Consider spanning tree T of current graph.

Find Ω( k

∆
) disjoint paths Pu,w between vertices u,w ∈ T .

On path Pu,w , increase potential of one vertex v ∈ L by
adding u or w to its home set Hv (and possibly adjusting
other home sets).

Example:

+1u w

{u} {u, a} {a, u}{u, b} {w}
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Conclusions

We have shown that temporal graphs whose degree is
bounded by ∆ in each step can be explored in
O(log∆ · n2

log n
) steps.

The best known lower bound for small ∆ is only
Ω(n log n) steps, so a large gap remains.

We are still only at the beginning of understanding how
restrictions on the underlying graph or on the graph in
each step affect the worst-case exploration time.
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Open Problems

Close the gap for temporal graphs of bounded degree in
each step.

Exploration of temporal graphs whose underlying graph is
planar:

What is the largest number of steps required?

Upper bound: O(n1.8 log n) steps
Lower bound: Ω(n log n) steps

Approximation algorithms?

Underlying graphs from other graph classes:

n × n grids
Planar graphs of bounded degree
Arbitrary graphs of bounded degree

Instance-dependent lower bounds on exploration time

Graphs that change only every c > 1 steps
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Thank you!
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