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Time-Dependent Arc-Delay and Arrival Functions

@ Directed graph G = (V,A), n=|V|, m = |A|
@ Arc (u,v)

ty

D [llV] (tu) = Arr[uv](ty)
=t +
D[uv](ty)
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Time-Dependent Shortest Paths

Instance with ARC DELAY functions

X+2,
2x+0.1

3x

X+2
2x+0.1

How would you commute as fast as possible from o to d, for a given
departure time (from 0)?
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Time-Dependent Shortest Paths

Instance with ARC-ARRIVAL functions

Arr[oud](t,) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](t,) = Arr{vd](Arr{ov](t)) = 6t, + 6.1
Arr[ouvd](t,) = Arr[vd](Arr[uv](Arr[ou](t,))) = 36t,+1.3
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Time-Dependent Shortest Paths

Instance with ARC-ARRIVAL functions

Arr[oud](t,) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](t,) = Arr{vd](Arr{ov](t)) = 6t, + 6.1
Arr[ouvd](t,) = Arr[vd](Arr[uv](Arr[ou](t,))) = 36t,+1.3

How would you commute as fast as possible from o to d, for a given

departure time (from 0)?

What if you are not sure about the departure time?

shortest od—path =

orange path, if t, € [0,0.03)
it t, €[0.03,2.9)
purple path, if t, € [2.9, +0)
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Raw traffic (speed probe) data TOMTOM ¢
@ 70 Million contributing users provide periodic measurements
@ Measured speed and position every 5-mins (for each road segment)
@ Every road segment measured ~ 2000 times per week
@ 5 Trillion measurements in historic data over 140 Billion Km

@ 4 Billion new measurements per day
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“Time-Dependent Setup
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= calculate the set of
fastest routes over time
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Time-Dependent Shortest Paths

ty

= Arr[uv](ty)
=t +

D[uv](ty)

D[uv](t,)
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Time-Dependent Shortest Paths

ty

D[llV] (tu) = Arr[uv](ty)

=ty +
D[uv](t,)

@ P, 4: od-paths; p = (a1,...,ak) € Pog

° functions
Arr[p](ty) = Arr[ak] e - - - ® Arr[as](ty) (function composition)
Dlp](to) = Arr[p](to) - to

° functions

Arrfo, d](to) = minpep, , { Arr[p](to) }
D[o, d|(ty) = Arr[o,d](to) — to

Goals

@ For departure-time t, from o, determine t; = Arr|o, d|(t,)
@ Provide a succinct representation of Arr[o, d] (or D|o, d])
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FIFO vs non-FIFO Arc Delays

° slopes of arc-delay functions > —1
= non-decreasing arc-arrival functions
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FIFO vs non-FIFO Arc Delays

@ FIFO Arc-Delays: slopes of arc-delay functions > —1
= non-decreasing arc-arrival functions

@ Non-FIFO Arc-Delays

» Forbidden waiting: 7 subpath optimality; NP-hard [Orda-Rom (1990)]
» Unrestricted waiting: = FIFO (arbitrary waiting) [Dreyfus (1969)]
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Complexity of TDSP

D: FIFO, piecewise-linear functions; K: total # of breakpoints

@ Given od—pair and departure time {, from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
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@ Primitive Breakpoint (PB)
Departure-time by, from x at which Arr[xy] changes slope
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Exact Succinct Representation
Why so high complexity ?

ta t2
2 K
> —— —

Arfo-u-d] Arfo,d] Arflo-v-d]
[ /d o
ARV B ed
Arua] Arfou] o Arfov] Arfval

@ Primitive Breakpoint (PB)
Departure-time by, from x at which Arr[xy| changes slope

@ Minimization Breakpoint (MB)
Departure-time by from o s.t. Arr[o, x] changes slope due to min
operator at x
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Complexity of TDSP

D: FIFO, piecewise-linear functions; K: total # of breakpoints

@ Given od—pair and departure time f, from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

@ Time-dependent shortest path heuristics: only empirical evidence
[Delling & Wagner 2009; Batz etal, 2009]

@ Complexity of computing succinct representations ?
» Open till recently ...
» Arrfo.d]: O((K + 1) - n®°&(M)) space [Foschini-Hershberger-Suri (2011)]

» DJo, d]: O(K + 1) space for point-to-point (1 4 &)—approximation
[Dehne-Omran-Sack (2010), Foschini-Hershberger-Suri (2011)]
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Complexity of TDSP
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Complexity of TDSP

D: FIFO, piecewise-linear functions; K: total # of breakpoints

@ Question 1: 1 data structure ( ) that
> requires ?
> allows answering efficiently ?

@ Trivial solution I: Precompute all (1 + ¢)—approximate distance
summaries for every od-pair
O(n2(K + 1)) space
¢+ O(log log(K)) query time
2% (14 &)—stretch
@ Trivial solution Il: No preprocessing, respond to queries with
TD-Dijkstra
¢ O(n+ m+ K) space
= O([m + nlog(n)] - log log(K)) query time
 1-stretch

@ Question 2: can we do better ?

» subquadratic space & sublinear query time
» 1 smooth tradeoff among space / query time / stretch ?
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Towards Time-Dependent Distance Oracles
Generic Framework for Static Landmark-based Oracles

@ Choose aset L c V of
@ V(e L, compute fromftoallveV

© Employ a query algorithm that uses the pre-computed
to answer arbitrary (o, d) distance queries
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Towards Time-Dependent Distance Oracles
An Axiomatic Approach — Network Properties

@ Static & undirected world — & world ?
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Property 1 (bounded travel time slopes)

Slopes of D[o, d] € [-1, Amax], for some constant Ay.x > 0

Property 2 (bounded opposite trips)
A¢>1:V(o,d)e VxV, Vte[0,T], D[o,d|(t) < ¢- D[d, o](t)

Property 3 (Dij.Rank and TD time are within polynomial factors)

A2, ¢1,c0 € 0(1), f(n) < log®(n), g(n) < czlog(n):
Mo, d](t) < f(n) - (D[o, d](t))" and Dlo, d](to) < g(n) - (T[o, d](t))""*

Property 4 (no. of arcs linear in no. of vertices)
m = O(n)
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Towards Time-Dependent Distance Oracles
An Axiomatic Approach — Network Properties

Validation of Properties

[ Data Set | Type (source) | n M | Amax | dmax | A
Berlin real (TomTom) 480K | 1135K | 0.19 | 1.19 | [1.3,1.6]
Germany | real (PTV) 4690K | 11183 K | 0.22 | 1.05 | [1.4,1.7]
WEurope | bench. (PTV) 18010 K | 42188 K | 3.60 | 1.13 | [1.4,1.7]
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First Efficient Time-Dependent Distance Oracle
[Kontogiannis & Zaroliagis, 2014]

@ Choose a set L of
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First Efficient Time-Dependent Distance Oracle
[Kontogiannis & Zaroliagis, 2014]

@ Choose a set L of

Q@ V(Lv)elLxV, compute Al¢, v]
D[¢,v] < Al¢,v] < (1 +¢€) - D[¢, V]

» BIS (bisection-based) approach, one-to-all (1 + &)- approxmatnon

© Answer arbitrary queries (0, d, t,) using FCA & RQA query

algorithms
] I Time \ Stretch \
()([{>F . n2_,3+0(1))
FCA o(n’) 1+e+y
< r+1
RQA O(n+M) |1 4e. A

@ K*: concavity spoiling breakpoints (0 < K* < K)
@ B,6€(0,1); ¥ = O(1) depends on network characteristics
@ r = O(1): recursion depth (budget)
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Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved V destinations

Dol

Dy

v

ty h

Example of Bisection Execution : INPUT = UNKNOWN BLUE function
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»
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Example of Bisection Execution : = Upper Bound, = Lower Bound
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Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved V destinations

Dy

D,

v

t b t3 tH

Example of Bisection Execution : Level-2 Recursion
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Approximating Distance Functions via Bisection

For continuous, pwl arc-delays

@ Run Reverse TD-Dijkstra to
project each
concavity-spoiling PB to a Pl
of the origin o

@ For each pair of consecutive
Pls at o, run BIS for the
corresponding
departure-times interval

head[uv)
>
>

val times at v

earliest-arri

\4

s
departure time from u = tail[uv]

© Return the concatenation of approximate distance summaries
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Landmark Selection and Preprocessing
K*(< K): total # of concavity-spoiling breakpoints;

@ Landmark selection: Yv e V,Prlve L] =p € (0,1),|LI=p-n
[correctness is independent of the landmark selection]

@ Preprocessing: V¢ € L, compute (1 + &)—approximate distance functions
A[t,v] to all v € V using BIS
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Preprocessing complexity (p = n™#)
@ Space

O((K*+1)-ILI-n- 1 -log(n/s)) = O(K* - n?#+o(1))

@ Time

O(IL| - & log?(Z2) - nlog n) = O(K* - n2=+o(1)
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FCA: constant-approximation query algorithm
[Kontogiannis & Zaroliagis, 2014]

e Asp[zo,a'_](Low}&,)‘K

e Q =SP[o,,](t,)

. P = SP[o,d](1,) \

1o
|
1q = 1o + D[o.d](t,)

.
return sol, = DJo, {o|(to) + A[fo, d](to + DJo, £o](to))
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e

1o
|
1q = 1o + D[o.d](t,)

.
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FCA: constant-approximation query algorithm
[Kontogiannis & Zaroliagis, 2014]

e Asp[zo,a'_](Low}&,)‘K

. Q =SP[o.L,](t,)
P = SP[o,d](z,) N

7
fo

|
1q = 1o + D[o.d](t,)

.
return sol, = DJo, {o|(to) + A[fo, d](to + DJo, £o](to))

FCA complexity
@ Approximation guarantee: < (1 + &+ ) - D[o, d|(1,)
Y =1+ Amax(1 +&)(1 +2¢ + Amaxl) + (1 + &)
@ Query-time: O(n°) (0 <6 < 1)
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RQA: Boosting the Approximation Guarantee — PTAS

[Kontogiannis & Zaroliagis, 2014]
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@ return best among
solj = D[O, W,‘](to) + D[W,',f,'](t,') + A[f,‘, d](t,' + D[W,‘, f,‘](t,'))

RQA Complexity

(1 +€/¢/)r+1

@ Approximation guarantee: 1 +o =1+¢- Orelp)y o1
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RQA: Boosting the Approximation Guarantee — PTAS

[Kontogiannis & Zaroliagis, 2014]

@ Growing level-0 ball...
@ Growing level-1 balls...
@ Growing level-2 balls...

@ ... until recursion
budget r is exhausted

@ return best among
solj = D[O, W,‘](to) + D[W,',f,'](t,') + A[f,‘, d](t,' + D[W,‘, f,‘](t,'))

RQA Complexity

(1+e/y) !

@ Approximation guarantee: 1 +o =1+¢- Orelp)y o1

@ Query-time: O(n*t91)); 0 < 6 < 1
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Towards More Efficient Time-Dependent Oracles

@ Previous TD oracle efficient only when K* € o(n)

@ Experimental analysis in Berlin [kmppwz, 20151 1 K* € ©(n) (1)
U

@ Space blow-up

@ Can we avoid dependence on K* and still maintain

» Subquadratic preprocessing ?
» Sublinear query time (also on Dijkstra rank) ?
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TRAP: New Approximation Method

T < n® (0 < a < 1): period; [Kontogiannis, Wagner & Zaroliagis, 2016]

r's r's

Dttt

Slope: Amax

Slope: ~-Amin

shortest travel time at v

@ Split [0, T) into E] length-7 subintervals, for a suitable choice of T
@ Compute (1 + &)-upper approximation per subinterval
@ Al[¢,v] (of D[o,d] : [0, T) = R.,): concatenation of all upper

approximations per subinterval
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TRAP: New Approximation Method

T < n® (0 < a < 1): period; [Kontogiannis, Wagner & Zaroliagis, 2016]

r's r's

Dttt

Slope: Amax

Slope: ~-Amin

shortest travel time at v

@ Split [0, T) into E] length-7 subintervals, for a suitable choice of T
@ Compute (1 + &)-upper approximation per subinterval
@ Al[¢,v] (of D[o,d] : [0, T) = R.,): concatenation of all upper

approximations per subinterval

TRAP Complexity
@ O(n*) TDSP-Calls
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BIS vs TRAP Approximation Methods

BIS

head[uv]
>
>

earliest-arrival times at v

h

n B 1y
departure time from u = tail[uv]

BIS (+)

& Simplicity

& Space-
optimal for
concave func-
tions

@ First one-to-
all approximation

BIS (-)

€ Linear depen-
dence on degree
of disconcavity
K*

TRAP
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head[uv]
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earliest-arrival times at v
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departure time from u = tail[uv]

BIS (+)

& Simplicity

& Space-
optimal for
concave func-
tions

@ First one-to-
all approximation

BIS (-)

€ Linear depen-
dence on degree
of disconcavity
K*

Dol 1)

DLy

TRAP (+) TRAP (-)
& Simplicity. 2 No guaran-
€ One-to-all tee of space-
approximation optimality
£ Indepen- € |nappropriate
dence from || for “nearby”
K* vertices around
o

 TRAP

0>
Slc’%\mope: -Amin

Max:Abs Erro

Slope: Amax
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TRAPONLY Oracle

[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

@ Compute distance summaries from V¢ € L to all v € V using TRAP
(guarantees (1 + &)-approximate distances to “faraway” vertices)
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TRAPONLY Oracle

[Kontogiannis, Wagner & Zaroliagis, 2016]

Preprocessing

@ Compute distance summaries from V¢ € L to all v € V using TRAP
(guarantees (1 + &)-approximate distances to “faraway” vertices)

Query Algorithm
@ RQA+

» Similar to RQA, but in addition ...
» for every ¢ € L discovered by RQA, grow a TD-Dijkstra ball of
appropriate size to compute distances to “nearby” vertices
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FLAT Oracle

[Kontogiannis, Wagner & Zaroliagis, 2016]
Preprocessing

@ compute distance summaries from e Ltoallve V
using TRAP (BIS) for “faraway” (“nearby”) vertices

Query Algorithms
@ Query: FCA, RQA, FCA+(N)

FCA+(N) Run FCA until N landmarks are settled. Theory: no better
than FCA; practice: remarkable stretch guarantees
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Query Algorithms
@ Query: FCA, RQA, FCA+(N)

FCA+(N) Run FCA until N landmarks are settled. Theory: no better
than FCA; practice: remarkable stretch guarantees

24 /36



HORN (Hierarchical ORacle for TD Networks)
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HORN (Hierarchical ORacle for TD Networks)

Idea — [Kontogiannis, Wagner & Zaroliagis, 2016]

@ Selection of landmark sets (colors indicate coverage sizes)
@ Small-coverage landmarks “learn” travel-time functions to their (only

short-range) destinations
@ Medium-coverage landmarks “learn” travel-time functions to their (up

to medium-range) destinations

@ Global-coverage landmarks “learn” travel-time functions to their (up
to long-range) destinations

25/36



HORN (Hierarchical ORacle for TD Networks)

Idea

LEV;L 3

Y, T

LEVEL 2 LEVEL 2 LEVEEL 2 LEVEL 2 LEVEL 2
o o o * 5
\1)\1)\1)\1)\1
o,

,0,0,.0,0,0,0,0,0,060,0,0,0. 0,

26 /36



HORN (Hierarchical ORacle for TD Networks)

Preprocessing

@ Depending on its level, each landmark has its own ,a
given-size set of surrounding vertices for which it is informed

@ Exponentially decreasing sequence of landmark set sizes

@ Exponentially increasing sequence of coverages per landmark

‘O(Iog log(n)) levels ‘ = Subquadratic preprocessing space/time
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Preprocessing

@ Depending on its level, each landmark has its own ,a
given-size set of surrounding vertices for which it is informed

@ Exponentially decreasing sequence of landmark set sizes

@ Exponentially increasing sequence of coverages per landmark

‘O(Iog log(n)) levels ‘ = Subquadratic preprocessing space/time

HORN Preprocessing Complexity

Appropriate construction of the hierarchy ensures subquadratic
preprocessing space and time O(n2‘5+°(1)); Be(0,1)
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HORN (Hierarchical ORacle for TD Networks)

Rationale of the hierarchy

| level | targeted DR [ Q-time | coverage | TRAP | Ring |
1 Ny = n-"7 N Jer=Ni-r | ver | N (s in(n)]
2 | No=n0" 00 | N = Noene |y | N (s in(n)]
kK| Ne=n0 07 1 Ne o= Neerte | yee | N/ (s In(n)]
k+1 Nipt =n n° Chid =N \n (Ni/('“) -In(n), n]
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| level | targeted DR [ Q-time | coverage | TRAP | Ring |
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2 | Np=n0* 7 | N | =N | G | NSOV (Hin(n)]

k

Kk Ny, = n0 =Dy N o = N - né Vex N/ (; In(n)]
k+1 Nipt =n n° Chid =N \n (Ni/('“) -In(n), n]

@ Mimic FLAT in each level i: all level-i landmarks are informed about ¢;
destinations around them

@ The density of level-i landmarks is such that ALL queries of Dijkstra
rank < N; can be answered by using ONLY level-i landmarks

© Fact: Running RQA at the of the hierarchy would
yield a good approximation

© Challenge: “Guess” the appropriate level; sublinearity on N; (rather
than n) can then be achieved
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HORN (Hierarchical ORacle for TD Networks)

Hierarchical Query Algorithm (HQA)

@ level-1 landmark ¢4 o
is uninformed

@ level-3 landmark 30,
although informed,
came too early

@ level-2 landmark {5,
is informed and
within the right
distance
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HORN (Hierarchical ORacle for TD Networks)

Hierarchical Query Algorithm (HQA)

@ level-1 landmark ¢4 o
is uninformed

@ level-3 landmark 30,
although informed,
came too early

@ level-2 landmark {5,
is informed and
within the right
distance

. RQA will use only
level-(> 2) landmarks
from now on

29/36



Summary of Time-Dependent Distance Oracles
[Kontogiannis, Wagner & Zaroliagis, 2016]

|| preprocessing | query | recursion budget (depth) r |

[KZ, 2014] K* . n2-A+d1) no+o1) reo(1)
TRAPONLY PP+ no+d1) r~%—1
FLAT n?A+d1) no+o(1) r~2_4
HORN pP A ] & oD r~2 1

@ HORN: hierarchical version of FLAT
@ [: Dijsktra rank
@ T=n%apB56€c(0,1)

@ Stretch of all query algorithms: 1 4 & - (Sx—ﬁ;
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Experimental Evaluation

Berlin (n = 480K, m = 1135K)

| Aigorithm | |L| [ Query (ms) | Rel. Error (%) |

TDD - 110.02 0

FLAT 2K 0.081 0.771
CFLAT 4K (1) 0.075 0.521
CFLAT | 16K (4) 0.151 0.022

Germany (n = 4690K, m = 11183K)

| Aigorithm | |L| | Query (ms) | Rel. Error (%) |

TDD - 1190.8 0

FLAT 2K 1.269 1.444
CFLAT |4K(1)| 0588 0.791
CFLAT | 4K (2) 1.242 0.206

Rel. error 1% = extra delay of 36 sec / 1 hour of optimal travel time
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Distance Oracle: Practical Issues
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Distance Oracle: Practical Issues
Google Maps, Tuesday 15:45
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Conclusions & Future Work

Conclusions

@ First Time-Dependent Distance Oracles

» Subquadratic preprocessing

» Sublinear query time (also on Dijkstra rank)
» Provable approximation guarantee

» Fully-scalable; work well in practice

Future Work

@ Explore new landmark sets
@ Improve space through new compression schemes
@ Exploit algorithmic parallelism to further reduce preprocessing time
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Thank you for your attention

@
Questions
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